# Shift optimization for matrix exponential computing 

Alexandr Katrutsa

Skolkovo Institute of Science and Technology

$$
\text { June 6, } 2019
$$

## Problem statement

$$
y(t)=\exp (-t A) v
$$

- Integration of differential equations

$$
\frac{d y}{d t}=-A y, \quad y(0)=v
$$

- Graph centrality measure
- Point cloud manifold descriptors


## Shift-and-invert method

- Krylov methods are based on

$$
\mathcal{K}_{k}(A, v)=\operatorname{span}\left(v, A v, A^{2} v, \ldots, A^{k-1} v\right)
$$

- Approximate in the orthogonal Krylov subspace

$$
\exp (-t A) v \approx V_{m} \exp \left(-t T_{m}\right) e_{1}
$$

- Matrix exponential is mostly determined by the smallest eigenpairs
- Replace $\mathcal{K}_{k}(A, v)$ with $\mathcal{K}_{k}\left((I+\gamma A)^{-1}, v\right)$
- Shift parameter $\gamma$ affects convergence


## How to find optimal shift?

- Change parameter: $\delta=\gamma / t$
- Introduce loss function

$$
\|r\|_{\infty}=\left\|A y(t)+y^{\prime}(t)\right\|_{\infty}
$$

and find $\delta$ that minimizes it

- Introduce method to update $\delta$ for online setting


## Optimization methods

Main assumption: all vectors $v$ come from the some fixed subset

- Optimize-and-run method

$$
\delta^{*}=\underset{\delta \in[0.01,0.1]}{\arg \min } \frac{1}{N} \sum_{i=1}^{N}\left\|r\left(\delta \mid A, v^{(i)}, K, \epsilon, t\right)\right\|_{\infty}
$$

- Incremental method: sequentially update $\delta$ for every next vector


## Incremental method

- Compute not only residual, but also derivative estimate
- Update $\delta$ with this derivative estimate
- Take the next vector and use updated $\delta$


## Application to PDE integration

$$
\begin{aligned}
& \quad \frac{\partial u}{\partial t}=\left(D_{1} u_{x}\right)_{x}+\left(D_{2} u_{y}\right)_{y}, \quad(x, y) \in \Omega=[0,1] \times[0,1], \\
& \\
& u(x, y, 0)=u_{0}, \\
& D_{1}= \begin{cases}1000, & (x, y) \in\left[\frac{1}{4}, \frac{3}{4}\right] \times\left[\frac{1}{4}, \frac{3}{4}\right], \quad D_{2}=\frac{1}{2} D_{1} . \\
0.1, & \text { otherwise, }\end{cases} \\
& -u_{0} \sim \mathcal{N}(\mu, \Sigma) \\
& -\mu-\text { random vector from } \Omega \\
& -\Sigma=0.05 I
\end{aligned}
$$

- Second order finite difference discretization


## Convergence speed up

- $n=300$, matrix size is $90000 \times 90000$
- $t=2 \cdot 10^{-4}$



## Total running time comparison


(a) $n=200, t=10^{-4}$

(b) $n=200, t=4 \cdot 10^{-4}$

## Comparison average number of iterations

|  | $\bar{\delta}=0.1$ | $\delta^{*}$ |
| :---: | :---: | :---: |
| $n=200, t=10^{-4}$ | 88.4 | 48.5 |
| $n=200, t=4 \cdot 10^{-4}$ | 292.05 | 93.45 |
| $n=300, t=10^{-4}$ | 237.75 | 100.6 |
| $n=300, t=2 \cdot 10^{-4}$ | 517.7 | 150.75 |

## Incremental method


(a) $n=200, t=10^{-4}$

(b) $n=200, t=4 \cdot 10^{-4}$

## Summary

- Rational Krylov approximation of matrix exponential
- Residual norm as loss function to evaluate quality of shift
- Incremental method for online setting

