Selfie: Self-supervised Pretraining for Image Embedding An Overview

Yuriy Gabuev

Skoltech

October 9, 2019

・ロト ・日 ・ ・ ヨト ・

Trinh, T. H., Luong, M. T., & Le, Q. V. (2019). Selfie: Self-supervised Pretraining for Image Embedding. arXiv preprint arXiv:1906.02940.

< □ > < □ > < □ > < □ > < □ >

Motivation

- We want to use data-efficient methods for pretraining feature extractors
- Unsupervised pretraining has revolutionized NLP (BERT, TransformerXL, GPT), while its success is still limited in other fields
- Context prediction methods, such as Masked Language Modeling, cannot be naively applied to continuous domains, such as images or audio
- Idea: solve masked prediction task in latent space

イロト イヨト イヨト

Background: BERT

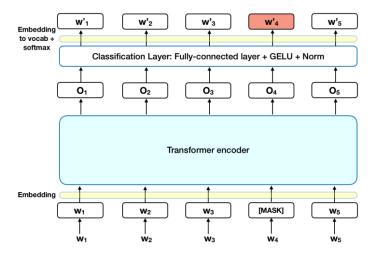


Figure 1: BERT architecture and pretraining objective

イロト イヨト イヨト イヨト

Method

Pretraining:

- Split a picture into non-overlapping patches
- Encode patches via a patch-processing convolutional network P
- Mask a fraction of the patches
- Pool non-masked patches via a pooler network A
- Use this pooled output to predict the spatial location of masked patches Finetuning:
 - Instantiate a full encoder partially or fully with P
 - Finetune on the target task

Method

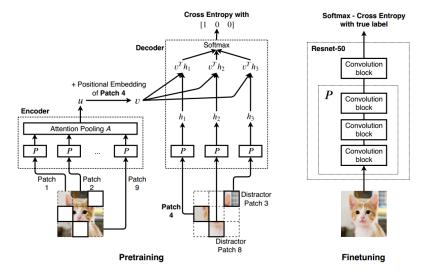


Figure 2: Overview of Selfie

イロン イロン イヨン イヨン

Details

Data:

- CIFAR-10 (32 \times 32) and ImageNet (32 \times 32 and 224 \times 224)
- $\bullet\,$ Patch size: 8 $\times\,$ 8 for small images and 32 $\times\,$ 32 for large images
- Fraction of masked patches: 25% or 50%

Architecture:

- Patch-processing network P: ResNet-36
- Pooler A: Transformer with 3 layers, 32 heads, hidden size 1024, intermediate size 640
- Positional encoding: learned, decoupled across width and height dimensions
- Full encoder-1: ResNet-50, the first three blocks are initialized with P
- Full encoder-2: the same as during pretraining

< □ > < 同 > < 回 > < 回 >

Full encoder variants

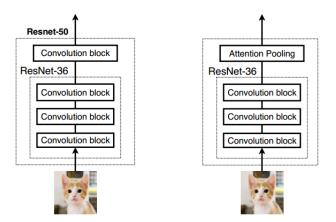


Figure 3: (Left) ResNet-50 architecture. (Right) ResNet-36 + attention pooling architecture.

< □ > < □ > < □ > < □ > < □ >

		Labeled Data Percentage			
		5%	8%	20%	100%
	Supervised	75.9 ± 0.7	79.3 ± 1.0	88.3 ± 0.3	95.5 ± 0.2
CIFAR-10	Selfie Pretrained	75.9 ± 0.4	80.3 ± 0.3	89.1 ± 0.5	95.7 ± 0.1
	Δ	0.0	+1.0	+0.8	+0.2
		5%	10%	20%	100%
ImageNet 32×32	Supervised	13.1 ± 0.8	25.9 ± 0.5	32.7 ± 0.4	55.7 ± 0.6
	Selfie Pretrained	18.3 ± 0.1	30.2 ± 0.5	33.5 ± 0.2	56.4 ± 0.6
	Δ	+5.2	+4.3	+0.8	+0.7
	Supervised	35.6 ± 0.7	59.6 ± 0.2	65.7 ± 0.2	76.9 ± 0.2
ImageNet 224×224	Selfie Pretrained	46.7 ± 0.4	61.9 ± 0.2	67.1 ± 0.2	77.0 ± 0.1
-	Δ	+11.1	+2.3	+1.4	+0.1

Figure 4: Test accuracy (%) of ResNet-50 with and without pretraining

メロト スピト メヨト メヨト

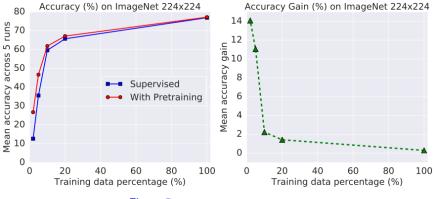


Figure 5: Accuracy gain from pretraining

・ロト ・回 ト ・ ヨト ・

Method	ResNet-50	ResNet-36 + attention pooling	Δ
CIFAR-10 8% ImageNet 10%	$\begin{array}{c} 80.3 \pm 0.3 \\ 61.8 \pm 0.2 \end{array}$	$\begin{array}{c} 81.3 \pm 0.1 \\ 62.1 \pm 0.2 \end{array}$	+1.0 +0.3
CIFAR-10 100% ImageNet 100%	$\begin{array}{c} 95.7 \pm 0.1 \\ 77.0 \pm 0.1 \end{array}$	$95.4 \pm 0.2 \\ 77.5 \pm 0.1$	-0.3 +0.5

Figure 6: Comparison of two version of the final encoder: ResNet-50 and ResNet-36 + attention pooling

・ロト ・四ト ・ヨト ・ヨト

- Selfie-pretraining provides a solid initialization for a feature extractor
- The effects of pretraining diminish with the amount of data for the target task
- A hybrid ConvNet with attention might work better than a pure ConvNet
- Pretraining on one of the datasets does not transfer well to other ones

• • • • • • • • • • •

Problems

- No fair comparison with recent methods without finetuning
- Pretrained subnet (ResNet-36) works in different regimes during pretraining and finetuning stages
- No ablation studies apropos encoder and pooler architectures, patch sampling methods
- No open-source code for reproduction

< □ > < 同 > < 回 > < 回 >

Thank You!

・ロト ・四ト ・ヨト ・ヨト

Further Reading

- Philip Bachman, R Devon Hjelm, and William Buchwalter. "Learning representations by maximizing mutual information across views". In: arXiv preprint arXiv:1906.00910 (2019).
- Priya Goyal et al. "Scaling and benchmarking self-supervised visual representation learning". In: arXiv preprint arXiv:1905.01235 (2019).
- **R** Devon Hjelm et al. "Learning deep representations by mutual information estimation and maximization". In: *arXiv preprint arXiv:1808.06670* (2018).
 - Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. "Revisiting self-supervised visual representation learning". In: *arXiv preprint arXiv:1901.09005* (2019).
 - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding". In: *arXiv preprint arXiv:1807.03748* (2018).
 - Yonglong Tian, Dilip Krishnan, and Phillip Isola. "Contrastive Multiview Coding". In: *arXiv preprint arXiv:1906.05849* (2019).

< □ > < □ > < □ > < □ > < □ >