Some thoughts about modelling aggregation

Matveev S. A.

July 24, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General properties of considered systems

- Pavel Krapivsky, Sidney Redner, Eli Ben-Naim. A kinetic view of statistical physics. Cambridge University Press, 2010.
- 📔 Фукс, Н. А. "Механика аэрозолей." 1955.
- Leyvraz Francois. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Physics Reports, 2003.

うして ふゆう ふほう ふほう うらつ

Галкин В. А. "Уравнение Смолуховского", ФизМатЛит, 2001

General properties of considered systems

We consider system of chaotically moving particles which

- Collide inelastically
- Fill space homogeneously and uniformly
- Collide by pairs, triplets etc
- Differ in sizes

Aggregation and fragmentation processes can be described with Smoluchowski-type equations

- Aerosol dynamics
- Reversible polymerization
- Aggregation and fragmentation in planetary rings

General properties of considered systems

・ロト ・ 日本 ・ 日本 ・ 日本

æ

General structure of models

In compact notations for the discrete case:

$$\begin{cases} \frac{d\mathbf{n}}{dt} = \mathbf{S}(\mathbf{n(t)}), \\ \mathbf{n(0)} = \mathbf{n_0} \end{cases}$$

•

$$\mathbf{n}(t) = \begin{bmatrix} n_1(t) & n_2(t) & \dots & n_M(t) & \dots \end{bmatrix}$$
$$\mathbf{n}_0 = \begin{bmatrix} n_{1_0} & n_{2_0} & \dots & n_{M_0} & \dots \end{bmatrix},$$
and continuous

$$\begin{cases} \frac{\partial n(v,t)}{\partial t} = \mathbf{S}(n(t)), \\ n(v,t=0) = n_0(v) \end{cases}$$

Multi-component case:

$$\overline{v} = (v_1, v_2, \dots, v_d)$$

•

Pairwise models

Continuous Smoluchowski equation

$$\frac{\partial n(v,t)}{dt} = \frac{1}{2} \int_0^v C(u,v-u)n(u,t)n(v-u,t)du - n(v,t) \int_0^\infty C(v,u)n(u,t)du.$$

Discrete Smoluchowski equation

$$\frac{dn_k(t)}{dt} = \frac{1}{2} \sum_{i+j=k} C_{i,j} n_i n_j - n_k \sum_{j\geq 1} C_{j,k} n_j , \ k = \overline{1,\infty} .$$

[Smoluchowski, M. von. Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen. Zeitschrift fur Physik 17 (1916): 557-585]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Pairwise models

• Irreversible coagulation with source and sink

$$\frac{dn_k(t)}{dt} = \frac{1}{2} \sum_{i+j=k} C_{i,j} n_i n_j - n_k \sum_{j=1}^N C_{j,k} n_j + J \delta_{k,1} , \ k = \overline{1,N} .$$

[Ball, Connaughton, Jones, Rajesh, Zaboronski, *Collective oscillations in irreversible coagulation driven by monomer inputs and large-cluster outputs*, PRL (2012)]

Aggregation-fragmentation equations in planetary rings

$$\frac{dn_k(t)}{dt} = \frac{1}{2} \sum_{i+j=k} C_{i,j} n_i n_j - (1+\lambda) n_k \sum_{j\geq 1} C_{j,k} n_j , \ k = \overline{2,\infty}.$$

$$\frac{dn_1}{dt} = -n_1 \sum_{j\geq 1} C_{1,j}n_j + \frac{\lambda}{2} \sum_{i,j\geq 2} C_{i,j}(i+j)n_in_j + \lambda n_1 \sum_{j\geq 2} jC_{1,j}n_j.$$

[Brilliantov, Krapivsky, Bodrova, ... Size distribution of particles in Saturn's rings from aggregation and fragmentation, PNAS (2015)]

Pairwise models

• Multicomponent Smoluchowski equation

$$\frac{\partial n(\overline{v},t)}{\partial t} = \frac{1}{2} \int_0^{v_1} \dots \int_0^{v_d} C(\overline{v} - \overline{u};\overline{u}) n(\overline{v} - \overline{u},t) n(\overline{u},t) du_1 \dots du_d - n(\overline{v},t) \int_0^{\infty} \dots \int_0^{\infty} C(\overline{u};\overline{v}) n(\overline{u},t) du_1 \dots du_d.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Multi-particle kinetics

$$\begin{aligned} \frac{dn_k}{dt} &= S_k^{(2)}(\mathbf{n}) + S_k^{(3)}(\mathbf{n}), \qquad k = \overline{1, \infty}, \\ S_k^{(2)}(\mathbf{n}) &= \frac{1}{2} \sum_{i_1+i_2=k} C_{i_1,i_2}^{(2)} n_{i_1} n_{i_2} - n_k \sum_{i_1=1}^{\infty} C_{i_1,k}^{(2)} n_{i_1}, \\ S_k^{(3)}(\mathbf{n}) &= \frac{1}{6} \sum_{i_1+i_2+i_3=k} C_{i_1,i_2,i_3}^{(3)} n_{i_1} n_{i_2} n_{i_3} - \frac{n_k}{2} \sum_{i_1,i_2=1}^{\infty} C_{i_1,i_2,k}^{(3)} n_{i_1} n_{i_2}. \end{aligned}$$

◆□> <畳> < Ξ> < Ξ> < Ξ</p>

Low-rank decompositions

Matrix skeleton decompositon

and rule for evaluation of the elements:

$$X(i_1,i_2) = \sum_{\alpha=1}^{R} U(i_1,\alpha)V(i_2,\alpha)$$

- We store just $2nR \ll n^2$. It is good when $R \ll n$
- There are robust methods

Low-rank decompositions

Canonical polyadic

$$X(i_1, i_2, \ldots, i_d) = \sum_{\alpha=1}^R U_1(i_1, \alpha) U_2(i_2, \alpha) \ldots U_d(i_d, \alpha)$$

- Compression $O(N^d) \rightarrow O(dNR)$
- Evaluation of rank is NP-full

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Low-rank decompositions

Tensor train

$$X_{i_1,i_2,\ldots,i_d} = \sum_{\alpha_i=1}^R G_1(\alpha_0,i_1,\alpha_1)G_2(\alpha_1,i_2,\alpha_2)\ldots G_d(\alpha_{d-1},i_d,\alpha_d)$$

うして ふゆう ふほう ふほう うらつ

- Compression $O(N^d)
 ightarrow O(dNR^2)$
- Complexity O(dNR³)
- Robust methods
- Robust operations

Predictor-corrector time-integration

$$\frac{n^{t+\frac{1}{2}}-n^{t}}{0.5\tau}=S^{(2)}(n^{t})+S^{(3)}(n^{t})+\ldots+S^{(D)}(n^{t})$$
$$\frac{n^{t+1}-n^{t}}{\tau}=S^{(2)}(n^{t+\frac{1}{2}})+S^{(3)}(n^{t+\frac{1}{2}})+\ldots+S^{(D)}(n^{t}),$$

Straight-forward complexity of evaluation of $S^{(D)}$ is $O(N^D)$. Even for two-component case it is too much!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- TT-based algorithm $O(NDR^2 \log N)$
- CP-based algorithm $O(NDR \log N)$

Main idea for pairwise case

Re-write ${f S}$ as:

$$\frac{1}{2} \sum_{i=2}^{N} \sum_{j=2}^{N} C_{i,j}(i+j)n_in_j = \frac{1}{2} \sum_{i=2}^{N} in_i \sum_{j=2}^{N} C_{i,j}n_j + \frac{1}{2} \sum_{i=2}^{N} n_i \sum_{j=2}^{N} C_{i,j}jn_j = \\ = \begin{bmatrix} n_2 & n_3 & \dots & n_N \end{bmatrix} \times \begin{bmatrix} C_{2,2} & C_{2,3} & \dots & C_{2,N} \\ C_{3,2} & \dots & \dots & C_{3,N} \\ \dots & \dots & \dots & \dots \\ C_{N,2} & C_{N,3} & \dots & C_{N,N} \end{bmatrix} \times \begin{bmatrix} 2n_2 \\ 3n_3 \\ \dots \\ Nn_N \end{bmatrix} \approx \\ \approx \begin{bmatrix} n_2 & n_3 & \dots & n_N \end{bmatrix} \times UV^T \times \begin{bmatrix} 2n_2 \\ 3n_3 \\ \dots \\ Nn_N \end{bmatrix}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Main idea for pairwise case

$$\sum_{i=1}^{k-1} C_{i,j} n_i n_{k-i} \approx \sum_{i=1}^{k-1} \sum_{\alpha=1}^{R} U_{\alpha}(i) V_{\alpha}(k-i) n_i n_{k-i} =$$
$$= \sum_{i=1}^{k-1} \sum_{\alpha=1}^{R} \widehat{U_{\alpha}}(i) \widehat{V_{\alpha}}(k-i)$$
$$\widehat{U_{\alpha}}(i) \equiv U_{\alpha}(i) n_i; \ \widehat{V_{\alpha}}(i) \equiv V_{\alpha}(i) n_i.$$

Hence complexity of time-step becomes $O(NR \log N)$ operations. Then we need estimetes for R.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Oscillations in aggregation shattering processes

 $a = 0.95, \lambda = 0.005$

ж

Oscillations in aggregation with source and sink

$$\frac{dn_k(t)}{dt} = \frac{1}{2} \sum_{i+j=k} C_{i,j} n_i n_j - n_k \sum_{j=1}^N C_{j,k} n_j + J \delta_{k,1} , \ k = \overline{1, N} .$$

There is trivial scaling rule allowing to normalize sink:

$$n_i(t)|_J = n_i\left(t\cdot\sqrt{J}\right)|_{J=1}\cdot\sqrt{J}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Advection-coagulation in 2D spatial case

$$\frac{\partial f(t, x, y, v)}{\partial t} + \nabla \cdot (c(x, y, v)f(t, x, y, v)) =$$

$$= \frac{1}{2} \int_{0}^{v} K(u, v - u)f(t, x, y, u)f(t, x, y, v - u)du -$$

$$-f(t, x, y, v) \int_{0}^{\infty} K(u, v)f(t, x, y, u)du,$$

(日) (同) (日) (日)

э

Issues in progress for advection-coaulation

- Add realistic evaluation of velocities c(x, y, v)
- Introduce some theoretical anlysis for convergence and stability
- Incorporate use of ready-made CFD packages and platforms

We are very interested in discussions and advice!

うして ふゆう ふほう ふほう うらつ

Main idea for milti-component case

Represent both kernel and soluton in TT-format and use TT-operations

$$\frac{\partial n(\overline{v},t)}{\partial t} = \frac{1}{2} \int_0^{v_1} \dots \int_0^{v_d} C(\overline{v} - \overline{u};\overline{u}) n(\overline{v} - \overline{u},t) n(\overline{u},t) du_1 \dots du_d - n(\overline{v},t) \int_0^{\infty} \dots \int_0^{\infty} C(\overline{u};\overline{v}) n(\overline{u},t) du_1 \dots du_d.$$

• After some technical preparations we obtain complexity of time-step $O(dN \log NR^3 + d^2NR^6)$ instead of $O(N^{2d})$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Multicomponent case performance vs Monte Carlo

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Numerical results for triple collisions

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A@

Speedup in parallel¹

Number of CPU-cores	time, sec	Speedup
1	257.80	1.00
2	147.62	1.75
4	80.21	3.21
8	43.65	5.91
16	22.63	11.39
32	14.83	17.38
64	13.15	19.60
128	12.22	21.09

¹"Zhores" supercomputer of Skoltech, 100 Gb/s EDR, 24 CPU cores per node

Спасибо за внимание! Thank you for attention! 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

²Our codes are open, ask if you interested