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About subject of report

Main reason.
Answer on question:

How to work with structured irregular domains in
modern DL paradigm?




Entry point

The most efficient DL methods focused so far on data defined on Euclidean domains (i.e. grids), particularly
ConvNets for images.

CIFAR-10




In this model:

GonvNet Ideas

We work with input data as data
which lay on Euclidean domain.
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We include in our model special
kind of prior knowledge (inductive
bias), which based on concrete
structure of images. We want to
focus on small invariant to some
transformation parts of images using
convolution filters and pooling.
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- Ok! It works for images.

- But can we use this approach for
other data?

- Depends on of
this data.



Useful Representations

We interested to embed our data in real vector space with preserving as much as possible semantically
meaningful features of our data (this increase area of possible applications of our vectors) and which
allow us to easy solve downstream (i.e. target) tasks.

Some features of “good” representations (Bengio et al. ):

e Smoothness: assumes that function to be learned fisst. = ~ y = f(z) ~ f(y)

e Sparsity: for any given observation only a small fraction of possible factors are relevant. (O or
sensitivity loss)

e Natural clustering: different values of categorical variables such as object classes are associated
with separate manifolds. It means that linear interpolation between examples of different classes in

general involves going through a low density region.

e Simple and disentangled factor dependencies as in natural science.


http://arxiv.org/abs/1206.5538

For this data we know how to represent it in the real vector space for solve current scope of tasks enough
well.

The quick brown
fox jumps over
the lazy dog

Text Audio

Word Embeddings / Pre-trained LM GMM + MFCC / SincNet



Still bad cases

Non-euclidean data represent more packeds | Aol ecene
complex items and concepts via T e
different specific formats. e \\| =P =
It means that data already have  2n T
sufficient dense representation. Molecules Trees
o o0le

This property increase hardness of oY A v, S
efficient embedding this data in ° % OO OOO N
euclidean space. 5 OOO 4 2 o

@)

Networks Manifolds

Non-Euclidean Data



Map to other data

Mapping from our data to another data which
can efficiently represented in euclidean

space: images, text, audio. OH
i 4
Example: ¢ N
simplified-molecular-input-line-entry-system (//_---{,-
SMILE) string to represent molecules Y 4 —
( ) g p CHN=—{ ) OH
Drawbacks: o
Morphine

e In transfer function we already lose
some structural information about data SMILES: CN10002304C1CCS—C2C[~C(C —CSIO:OCBC(C 104]0

e “New” data can unpreserve text,
image, audio ordinary features.



Geometric Deep Learning

e It’s umbrella term for collection of techniques to generalize DL methods for non-Euclidean domain.

e Most popular representation of manifolds in GDL:
o point-based (PointNet, PointNet++)
o graph-based (Graph ConvNets)

e Use cases:
o Molecular learning

o Network learning
o 3D modeling




Graph Is All You Need




Machine Learning on Graphs

WHY GRAPHS?

e Most general way to work with discrete data. In practical tasks we don’t know exact features of object
(black-box nature). We only know relation between them. In this case graphs are a powerful medium
for representing diverse knowledge.

e Easy interpretable and human-focused.

e Huge amount of available data, which already in graph format. Other data we can easily map on graph
space without any information loss. Most of old-fashion Al based on specific type of knowledge
graphs, which allow to work with weak computational powers and low-amount of data. This
correspond to new zero-shot learning. Why we don’t use those experience?

e Already existed concrete success stories




Graphs in Computer Vision

From pixel to superpixel!

(a) Filtering of graphs (b) Filtering of meshes

Regular grid Superpixels

Figure 2. Representation of images as graphs. Left: regular grid
(the graph is fixed for all images). Right: graph of superpixel
adjacency (different for each image). Vertices are shown as red
circles, edges as red lines.



Graphs in Recommender Systems

Representing collaborative filtering rating matrix via bipartite graph (MATRIX COMPLETION)
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Graphs in NL

e Text Summarization

e Knowledge Graphs

e Question Answering

e Word Sense Disambiguation
e Word similarity matrices

e Relation Extraction

e Textual Entailment
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Fig. 6. Multiscale community structures in a graph of social interactions between children in a primary school. The different figures show the partition of
the original social network in 2, 5 and 10 communities, respectively. From [199], with permission.



Graphs in Chemistry & Biology
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Fig. 1 (a) Graph representation of 2-propanol, G(A,X). The colored
columns in each node represent atom descriptors, X;. (b) The i-th atom
descriptors X; contains initial atom features (atom type, number of
hydrogens attached, number of valence electrons, and aromaticity) and
the adjacency matrix A represents the connectivity between atom pairs
including self-connections.



Additional use cases of Graph Learning

e Use case in Sensor Networks ‘

e Discrete Optimization via Continuous Optimization

e In all described areas graph can be used as format 1
for data augmentation and knowledge transfer ’ .

Fig. 1. Signal expanded on exemplary graph.



Graph ML Algorithms



Graph definition and useful properties

e Ordinary graph - G ={V, E}, where V - set of vertices (enumerated objects), E - set of edges (pair of

vertices) e

e In ML settings researchers work with attributed and highly non-regular graphs

o  Regularity means that degree ( #of incident edges) of each vertex is the same °
e C(Classical graph representation: 6‘5

o Incidence (vertex - edge) matrix
o Adjacency (vertex - edge) matrix

e Also graph data is network data, so, it’s inherently higher-order,
which allow to extract multi-hop features



Classical Graph ML

e Graph clustering for unsupervised learning
o Graph cuts
o Message passing
o  Chinese Whispers
e Nonlinear dimensionality reduction
o Locally Linear Embedding (LLE)
L(Z)=|Z - AZ|%,st27Z =1

o Laplacian eigenmaps:
L(Z) = tr(ZTLZ)

e Graph kernels for supervised learning (kernel under
string of vertices (=characters/numbers))
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Spectral / Spatial Graph Deep Learning

e There are two main approach to formulate Graph Convolution for Deep Learning

o Spectral-based on eigenvalues of Graph Laplacian
- _1 _1
L=1,—-D 2AD>2
Di; = > ,;(Aij)

o Spatial-based



CGonvolutional Graph Neural Networks

Hidden layer Hidden layer
Instead of iterating node states with " a ) P B |
contractive constraints, ConvGNNs { § ?
address the cyclic mutual dependencies va ’ \o o
Input g " 2 Output

architecturally using a fixed number of

layers with different weights in each layer. °\4. < | = \é‘ o TS0

ConvGNNs fall into two categories:

e Spectral-based. Example, GCN: .... .
H:X*@g:f(zx@), *—¢ g * o A

e Spatial-based. Example, GCN:

hv:f(( Z Av,uxu)@ YveV. Z:In—'—D_%AD_%

uwe{N(v)Uv}



Graph Representation via Random Walks

1. Estimate probability of visiting node v on a random
walk starting from node u using some random walk

strategy R. —) DG (vj]vs)

2. For each node u collect NR(u), the multiset*of nodes
visited on random walks starting from u.
1. Run random walks to obtain co-occurrence statistics.
3. Optimize embeddings to encode these random
walk statistics.

4. Expressivity: local and high-order neigh info

5. Efficiency: only need to consider pairs that co-occur
on random walks

2. Optimize embeddings based on
co-occurrence statistics.



Neural Graph Representation via RW

E Z Z _log U|zu))

ueV veENR(u)

formulate via Negative Sampling:

L= Z Z —log(P(v|zy))

u€V vENR(u)

1. DeepWalk (Perozzi et al., 2013)- just fixed-length,
unbiased random-walks starting from each node

2. Node2vec (Grover and Leskovec, 2016) used
flexible random walks that can trade off between
local and global views of the network: p - return
back to previous node; g - DFS/BFS;

"

Micro-view of
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p=1, f=2
Microscopic view of the
network neighbourhood

&

Macro-view of
neighbourhood

=, =tB
Macroscopic view of the
network neighbourhood


https://arxiv.org/pdf/1403.6652.pdf
https://arxiv.org/pdf/1607.00653.pdf

GraphSAGE ( SAmple and aggreGatE )

I:l///;
) (
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

GraphSAGE is general graph inductive framework which can represent unseen nodes (vertices).
Based on two general parameters:

e Neighborhood definitions

e Aggregator architecture



GraphSAGE ( SAmple and aggreGatE )

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph G(V, £); input features {x,,, Vv € V}; depth K; weight matrices
WFE VE € {1, ..., K'}; non-linearity o; differentiable aggregator functions
AGGREGATEy, Vk € {1, ..., K'}; neighborhood function N : v — 2V

Output : Vector representations z,, forall v € V

1 hY <« x,,YveV;
2 fork=1...K do
3 forv € V do
4

h}, () ¢ AGGREGATE({h{~!,Yu € N(v)});
5 h* « o (W’C - CONCAT(h*~1, hjfv(v)))
6 end
7 | bt hE/|nk|, Yo € V
8 end
9 z, + hE YoeVy




GraphSAGE ( SAmple and aggreGatE )

e Neighborhood definition: Uniform sample from adjacency vector
e Aggregator architectures ideally should be symmetric (i.e., invariant to permutations of it’s inputs):

o Mean aggregator
h* « o(W - MEAN({h*"1} U {h*~! Vu e N (v)})
o LSTM aggregator: LSTMs are not inherently symmetric (i.e., they are not permutation
invariant), since they process their inputs in a sequential manner. Authors adapt LSTMs to

operate on an unordered set by simply applying the LSTMs to a random permutation of the
node’s neighbors.

o Pooling aggregator

AGGREGATER™ = max({o (Wpeih® +b),Vu; € N(v)}),



Graph Attention Networks (GAT)

GAT also aggregate information of neighborhood nodes
like GCN, but adopts attention mechanisms to learn the
relative weights between two connected nodes

h¥ =6( )  ocuW*1n{D)

ueN (v)Uv
Where
0) _
hy” = zy The attention weight oy

Measures the connection strength from node v to its
neighbor u

Ny = softmaa:(g(aT[W(k_l)hv | |W(k_1)hu]))

g(-) is LeakyRelU activation function and a is a vector of
learnable parameters.

(a) GCN [22] explicitly assign
a non-parametric weight a;; =
1 to the neighbor

Vdeg(vi)deg(v;)

v; of v; during the aggregation
process.

+ hv1
= 2 X5
()hvz o o‘hhv‘*(‘)
K« :I(_ :, 51

A12< O N
~ g |ghe

(b) GAT [43] implicitly capture
the weight a;; via an end-to-end
neural network architecture, so
that more important nodes receive
larger weights.



Generative Graph Autoencoders

Possible solution of two main problems:

1. Preservation of complex structure

property N
— Locality co nstraim\
both global and local

. o o D —_— LST}\Idwlewder pe] |
a. Using LSTM as complex ®) e, | n
. . 9 . ®—@‘—> | |__, LSTMEncoder i | —
aggregation function that map rw 0. walk || e Positive samples —
to VeC Network : Reconstruction error
b. Locality-preserving loss and *~Pugea(®) %

reconstruction loss
2. Sparsity of network sampling
Sampled data represent only a small

Discriminator
Generator A

96(2) dy()

. z~N(0,I)
pI‘OpOI’tIOn Of a ” the Ve rteX Seq uences Negative samples Input Adversarial regularization

a. More prior info and more complex
regularization via generative
adversarial learning



Matrix and Tensor
Decomposition Models
in Graph Learning




Matrix Factorization Models for Graphs

e Graph can represented via matrix. It can be:
o Adjacency matrix
o Incidence matrix
o Laplacian matrix
o  Similarity matrix between graph elements (nodes/vertices or some more complex structure)

e |et’s factorize this matrix to represent graph elements via low-dimensional vectors. In this case dot
products between node embeddings approximate edge existence.



|dea: Measure overlap between node neighborhoods

L LA N ]
S e "..
.

Sy, is the neighborhood overlap between yand

Example: Jaccard overlap or Adamic-Adar score

*
* .0 * "
L e 4

L] .

L . " (34
~ L] L]
......‘-. LA N B

£ — Z | Z,IZ,U = Su,’v||2

VxV_~ \
(u,’u) < multi-hop network similarity

embedding i e., any neighborhood
similarity overlap measure)




Table 1: General Formulation for High-order Prox-
imity Measurements

Proximity Measurement M, M,
Katz I-5-A [ A
Personalized Pagerank | I—aP | (1—a)- 1
Common neighbors 1 A*
Adamic-Adar I A-D-A
{uf uf} Wi
SR
\\\ o %
u; ug u3

Algorithm 1 High-order Proximity preserved Embedding
Require: adjacency matrix A, embedding dimension K,
parameters of high-order proximity measurement®.
Ensure: embedding source vectors U® and target vectors

U
1: calculate My, and M.
2: perform JDGSVD with M, and M,;, and obtain the gen-

eralized singular values {01, ,0%} and {07, - 0% b
and the corresponding singular vectors, {v{,--- v}
and {vi, -, vi}.

3: calculate singular values {o1,---,0kx} according to

Equation (21).
4: calculate embedding matrices U® and U’ according to
Equation (19) and (20).

l

g
JDGSVD - 7= (21)
o o S U=l Ew e vid (19)

U =[o1 Vi, oK - vi]



M-NMF - Modularized Nonnegative Matrix Factorization to incorporate community structure into network
embedding.

Preserve:
e Microscopic structure:

o  First-order proximities based on adjacency matrix: S(l) — A
g1 g1
(2) 5

— tJ

o Second-order proximities: Define S; = (Sf,ll),---,Sg,l,z) then Sij = SO 18|
i b
o §=8U4nS? where nissome positive hyperparameter
e Mesoscopic structure

o Community structure: where k - degree of node, e - #edges, first community indicator
Q= 4_16 Zij(Aij - k;_l:j)hihj h € {1’ _1}



: : . . kik;
For community structure define following matrix: Bij = Aij — 55

Finally we have following problem:

minM,U,H,C ||S — MUTH% + OéHH — UCTH% — ﬂtr(HTBH)
Subject to

M>0,U>0,H>0,C>0,tr(HTH) =n
Problem solved via Multiplicative Updates (MU) which derived from KKT conditions.

M - basis matrix

U - node representation matrix

H - community indicator

C - community representation matrix



Tensor Decomposition Models for Graphs

e [ntuition

o As we have already seen in M-NMF methods graphs internally have higher-order structure
which can not capture via simple node similarity matrix

o  Graph Convolution (in neural approaches) work with graph often via graph coarsening
e Higher-order structure of graphs

o  Connected components and subgraphs

o Analyzed via Motifs, GraphLets

e Concrete methods particularly for Knowledge Graph (already 3-order tensor) for general graph needs
tensorizing



Knowledge Graphs

e KB/KG is huge amount of facts about the
world which can be useful for downstream _ )
tasks (example: NLP) J-th entity

e KG contain relational data via triples of two it '
entities (head and tail) and relation between t-th entity ol

hem: (e; ; .
them: (e;, 7, €5) o ;@ Yiik

Example: (“Barack Obama”, “place of birth”, k-th relation ©]
“Honolulu”)

e Task is to to predict new facts about the world
=> which is equivalent to predicting new
edges in the graph => predict missing values

in associated tensor => Tensor Completion

/

e Underlying problems: tensor is binary and 1
contain only information of “true” facts. Yiih = %

0, otherwise.

/

if the triple (e;, 7, e;) exists



Rescal: a bilinear model

e Use Tucker2 decomposition of adjacency tensors

H. H,
— 1 j~th i
6~=1 =1 entity o entity o
e Problem formulate: .
o In euclidean space (optimized via ALS) refan -

k.—th
min > [Yy —EWLET % + M[E[% + A2 ) [Wi|7 rela

s~

o Inlogit space (optimized via SGD)

N4
max | logBer(y" |o(f(z";0))) +log p(© ] A)
n=1



Other models for KG

e Tatec model

e DistMult:
e HolE:
e ComplEx:

TATEC __ T , T T T N, .
fz.jk =e; Rrej +e 7+ e; T+ € De;

ggSTMULT = diag(e; )diag(ry)diag(e;)
gk =T (e * €5)

foMPEEY = Re(diag(e;)diag(r)diag(e;))

e Also used loss function based on hinge loss with Corrupted Triples:

Z(h,r,t)EY Z(h',r',t’)eC max(O, 1 - fh,r,t + .fh',r’,t’)



Other graph embedding methods

e Also existed some additional methods based on:
o Hyperbolic space as part of new ML field called Hyperbolic Deep Learning

o Based on graph Dihedral Group ( Relation Embedding with Dihedral Group in Knowledge Graph
)



https://arxiv.org/pdf/1906.00687.pdf

Graph Learning Resources

e Blogs of companies, organizations and already famous researchers which interesting in Graphs:
o  Octavian ( https://www.octavian.ai)
o Deepmind ( https://arxiv.org/abs/1806.01261)
o  Thomas Kipf ( https://tkipf.github.io )
o  Maximilian Nickel ( https://mnick.github.io/)

e Concrete ML paradigm (corresponding to graphs):
o Geometric deep learning
m Famous researcher: Michael Bronstein
m GDL Site: ( http:/geometricdeeplearning.com)
o Hyperbolic deep learning
m Famous researchers: Maximilian Nickel
m HDL Site: ( http://hyperbolicdeeplearning.com)

e Paper collection:
o https://github.com/DeepGraphlearning/LiteratureDL4Graph
o  THUNLP lab at Tsinghua University ( https://github.com/thunlip)



https://www.octavian.ai
https://arxiv.org/abs/1806.01261
https://tkipf.github.io
https://mnick.github.io/
http://geometricdeeplearning.com
http://hyperbolicdeeplearning.com
https://github.com/DeepGraphLearning/LiteratureDL4Graph
https://github.com/thunlp

Programming Toolboxes

Python Frameworks:

O

O O O O O O O ©O

PyTorch Geometric: ( https://pytorch-geometric.readthedocs.io/en/latest/ )
Deep Graph Library ( https://www.dgl.ai)

Deepmind Sonnet: ( https://sonnet.dev)

PyTorch-BIGGRAPH ( https://torchbiggraph.readthedocs.io/en/latest/ )

GraphVite Graph Embedding Library ( https://graphvite.io)

GEM Graph Embedding Libraries ( https://github.com/palash1992/GEM )
TorchKGE KG Embedding Library ( https://torchkge.readthedocs.io)

AmpliGraph KG Embedding Library ( https://docs.ampligraph.org/en/1.1.0/install.html )
Pykg2vec Embedding Library ( https://github.com/Sujit-O/pykg2vec)

General Graph Analysis:

@)
@)

NetworkX ( https://networkx.github.io)
Graph-tool ( https://graph-tool.skewed.de )

Program for graph visualization:

@)

Gephi ( https://gephi.org)



https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai
https://sonnet.dev
https://torchbiggraph.readthedocs.io/en/latest/
https://graphvite.io
https://github.com/palash1992/GEM
https://torchkge.readthedocs.io
https://docs.ampligraph.org/en/1.1.0/install.html
https://github.com/Sujit-O/pykg2vec
https://networkx.github.io
https://graph-tool.skewed.de
https://gephi.org

Thank you for your
attention!



