
Modern Machine
Learning on Graphs

Igor Vorona
Skoltech CDISE

 About me

From

● BSc (2011 - 2015) and MSc (2015 - 2017) at
the Lomonosov MSU (CMC faculty)

● Working (2017-2018) on the Matrix
Factorization methods in the NLP

To

● PhD student (first year) at the CDISE
Skoltech.

● Supervisors: Andrzej Cichocki, Anh-Huy
Phan

● Topic of research about generalized tensor
models in the different ML application.

 About subject of report

Main reason.

Answer on question:

How to work with structured irregular domains in
modern DL paradigm?

 Entry point

The most efficient DL methods focused so far on data defined on Euclidean domains (i.e. grids), particularly
ConvNets for images.

 ConvNet Ideas

In this model:

● We work with input data as data
which lay on Euclidean domain.

● We include in our model special
kind of prior knowledge (inductive
bias), which based on concrete
structure of images. We want to
focus on small invariant to some
transformation parts of images using
convolution filters and pooling.

- Ok! It works for images.

- But can we use this approach for
other data?

- Depends on REPRESENTATION of
this data.

 Useful Representations
We interested to embed our data in real vector space with preserving as much as possible semantically
meaningful features of our data (this increase area of possible applications of our vectors) and which
allow us to easy solve downstream (i.e. target) tasks.

Some features of “good” representations (Bengio et al.):

● Smoothness: assumes that function to be learned f is s.t.

● Sparsity: for any given observation only a small fraction of possible factors are relevant. (0 or
sensitivity loss)

● Natural clustering: different values of categorical variables such as object classes are associated
with separate manifolds. It means that linear interpolation between examples of different classes in
general involves going through a low density region.

● Simple and disentangled factor dependencies as in natural science.

http://arxiv.org/abs/1206.5538

 Good cases

For this data we know how to represent it in the real vector space for solve current scope of tasks enough
well.

Word Embeddings / Pre-trained LM GMM + MFCC / SincNet

 Still bad cases

Non-euclidean data represent more
complex items and concepts via
different specific formats.

It means that data already have
sufficient dense representation.

This property increase hardness of
efficient embedding this data in
euclidean space.

 Map to other data

Mapping from our data to another data which
can efficiently represented in euclidean
space: images, text, audio.

Example:

simplified-molecular-input-line-entry-system
(SMILE) string to represent molecules

Drawbacks:

● In transfer function we already lose
some structural information about data

● “New” data can unpreserve text,
image, audio ordinary features.

 Geometric Deep Learning

● It’s umbrella term for collection of techniques to generalize DL methods for non-Euclidean domain.

● Most popular representation of manifolds in GDL:
○ point-based (PointNet, PointNet++)
○ graph-based (Graph ConvNets)

● Use cases:

○ Molecular learning
○ Network learning
○ 3D modeling

Graph Is All You Need

 Machine Learning on Graphs

WHY GRAPHS?

● Most general way to work with discrete data. In practical tasks we don’t know exact features of object
(black-box nature). We only know relation between them. In this case graphs are a powerful medium
for representing diverse knowledge.

● Easy interpretable and human-focused.

● Huge amount of available data, which already in graph format. Other data we can easily map on graph
space without any information loss. Most of old-fashion AI based on specific type of knowledge
graphs, which allow to work with weak computational powers and low-amount of data. This
correspond to new zero-shot learning. Why we don’t use those experience?

● Already existed concrete success stories

 Graphs in Computer Vision

From pixel to superpixel!

 Graphs in Recommender Systems

Representing collaborative filtering rating matrix via bipartite graph (MATRIX COMPLETION)

 Graphs in NLP

● Text Summarization

● Knowledge Graphs

● Question Answering

● Word Sense Disambiguation

● Word similarity matrices

● Relation Extraction

● Textual Entailment

 Graphs in Social Science

 Graphs in Chemistry & Biology

 Additional use cases of Graph Learning

● Use case in Sensor Networks

● Discrete Optimization via Continuous Optimization

● In all described areas graph can be used as format
for data augmentation and knowledge transfer

Graph ML Algorithms

 Graph definition and useful properties

● Ordinary graph - G = {V, E}, where V - set of vertices (enumerated objects), E - set of edges (pair of
vertices)

● In ML settings researchers work with attributed and highly non-regular graphs

○ Regularity means that degree (#of incident edges) of each vertex is the same

● Classical graph representation:

○ Incidence (vertex - edge) matrix

○ Adjacency (vertex - edge) matrix

● Also graph data is network data, so, it’s inherently higher-order,
which allow to extract multi-hop features

 Classical Graph ML

● Graph clustering for unsupervised learning

○ Graph cuts
○ Message passing
○ Chinese Whispers

● Nonlinear dimensionality reduction

○ Locally Linear Embedding (LLE)

○ Laplacian eigenmaps:

● Graph kernels for supervised learning (kernel under
string of vertices (=characters/numbers))

 Spectral / Spatial Graph Deep Learning

● There are two main approach to formulate Graph Convolution for Deep Learning

○ Spectral-based on eigenvalues of Graph Laplacian

○ Spatial-based

 Convolutional Graph Neural Networks

Instead of iterating node states with
contractive constraints, ConvGNNs
address the cyclic mutual dependencies
architecturally using a fixed number of
layers with different weights in each layer.
ConvGNNs fall into two categories:

● Spectral-based. Example, GCN:

● Spatial-based. Example, GCN:

 Graph Representation via Random Walks

1. Estimate probability of visiting node v on a random
walk starting from node u using some random walk
strategy R.

2. For each node u collect NR(u), the multiset*of nodes
visited on random walks starting from u.

3. Optimize embeddings to encode these random
walk statistics.

4. Expressivity: local and high-order neigh info

5. Efficiency: only need to consider pairs that co-occur
on random walks

 Neural Graph Representation via RW

formulate via Negative Sampling:

1. DeepWalk (Perozzi et al., 2013)- just fixed-length,
unbiased random-walks starting from each node

2. Node2vec (Grover and Leskovec, 2016) used
flexible random walks that can trade off between
local and global views of the network: p - return
back to previous node; q - DFS/BFS;

https://arxiv.org/pdf/1403.6652.pdf
https://arxiv.org/pdf/1607.00653.pdf

 GraphSAGE (SAmple and aggreGatE)

GraphSAGE is general graph inductive framework which can represent unseen nodes (vertices).

Based on two general parameters:

● Neighborhood definitions

● Aggregator architecture

 GraphSAGE (SAmple and aggreGatE)

 GraphSAGE (SAmple and aggreGatE)

● Neighborhood definition: Uniform sample from adjacency vector

● Aggregator architectures ideally should be symmetric (i.e., invariant to permutations of it’s inputs):

○ Mean aggregator

○ LSTM aggregator: LSTMs are not inherently symmetric (i.e., they are not permutation
invariant), since they process their inputs in a sequential manner. Authors adapt LSTMs to
operate on an unordered set by simply applying the LSTMs to a random permutation of the
node’s neighbors.

○ Pooling aggregator

 Graph Attention Networks (GAT)

GAT also aggregate information of neighborhood nodes
like GCN, but adopts attention mechanisms to learn the
relative weights between two connected nodes

Where

 The attention weight

Measures the connection strength from node v to its
neighbor u

is LeakyReLU activation function and a is a vector of
learnable parameters.

 Generative Graph Autoencoders
Possible solution of two main problems:

1. Preservation of complex structure
property
both global and local

a. Using LSTM as complex
aggregation function that map rw
to vec

b. Locality-preserving loss and
reconstruction loss

2. Sparsity of network sampling
Sampled data represent only a small
proportion of all the vertex sequences

a. More prior info and more complex
regularization via generative
adversarial learning

Matrix and Tensor
Decomposition Models
in Graph Learning

 Matrix Factorization Models for Graphs

● Graph can represented via matrix. It can be:
○ Adjacency matrix
○ Incidence matrix
○ Laplacian matrix
○ Similarity matrix between graph elements (nodes/vertices or some more complex structure)

● Let’s factorize this matrix to represent graph elements via low-dimensional vectors. In this case dot
products between node embeddings approximate edge existence.

 Hope

Idea: Measure overlap between node neighborhoods

 is the neighborhood overlap between and

Example: Jaccard overlap or Adamic-Adar score

 Hope

JDGSVD -
Jacobi-Davidson
type GSVD

 M-NMF

M-NMF - Modularized Nonnegative Matrix Factorization to incorporate community structure into network
embedding.

Preserve:

● Microscopic structure:

○ First-order proximities based on adjacency matrix:

○ Second-order proximities: Define then

○ , where is some positive hyperparameter

● Mesoscopic structure

○ Community structure: where k - degree of node, e - #edges, first community indicator

 M-NMF

For community structure define following matrix:

Finally we have following problem:

Subject to

Problem solved via Multiplicative Updates (MU) which derived from KKT conditions.

M - basis matrix
U - node representation matrix
H - community indicator
C - community representation matrix

 Tensor Decomposition Models for Graphs
● Intuition

○ As we have already seen in M-NMF methods graphs internally have higher-order structure
which can not capture via simple node similarity matrix

○ Graph Convolution (in neural approaches) work with graph often via graph coarsening

● Higher-order structure of graphs

○ Connected components and subgraphs

○ Analyzed via Motifs, GraphLets

● Concrete methods particularly for Knowledge Graph (already 3-order tensor) for general graph needs
tensorizing

 Knowledge Graphs
● KB/KG is huge amount of facts about the

world which can be useful for downstream
tasks (example: NLP)

● KG contain relational data via triples of two
entities (head and tail) and relation between
them:
Example: (“Barack Obama”, “place of birth”,
“Honolulu”)

● Task is to to predict new facts about the world
=> which is equivalent to predicting new
edges in the graph => predict missing values
in associated tensor => Tensor Completion

● Underlying problems: tensor is binary and
contain only information of “true” facts.

 Rescal: a bilinear model

● Use Tucker2 decomposition of adjacency tensors

● Problem formulate:
○ In euclidean space (optimized via ALS)

○ In logit space (optimized via SGD)

 Other models for KG

● Tatec model

● DistMult:

● HolE:

● ComplEx:

● Also used loss function based on hinge loss with Corrupted Triples:

 Other graph embedding methods

● Also existed some additional methods based on:

○ Hyperbolic space as part of new ML field called Hyperbolic Deep Learning

○ Based on graph Dihedral Group (Relation Embedding with Dihedral Group in Knowledge Graph
)

https://arxiv.org/pdf/1906.00687.pdf

 Graph Learning Resources

● Blogs of companies, organizations and already famous researchers which interesting in Graphs:
○ Octavian (https://www.octavian.ai)
○ Deepmind (https://arxiv.org/abs/1806.01261)
○ Thomas Kipf (https://tkipf.github.io)
○ Maximilian Nickel (https://mnick.github.io/)

● Concrete ML paradigm (corresponding to graphs):
○ Geometric deep learning

■ Famous researcher: Michael Bronstein
■ GDL Site: (http://geometricdeeplearning.com)

○ Hyperbolic deep learning
■ Famous researchers: Maximilian Nickel
■ HDL Site: (http://hyperbolicdeeplearning.com)

● Paper collection:
○ https://github.com/DeepGraphLearning/LiteratureDL4Graph
○ THUNLP lab at Tsinghua University (https://github.com/thunlp)

https://www.octavian.ai
https://arxiv.org/abs/1806.01261
https://tkipf.github.io
https://mnick.github.io/
http://geometricdeeplearning.com
http://hyperbolicdeeplearning.com
https://github.com/DeepGraphLearning/LiteratureDL4Graph
https://github.com/thunlp

 Programming Toolboxes

● Python Frameworks:
○ PyTorch Geometric: (https://pytorch-geometric.readthedocs.io/en/latest/)
○ Deep Graph Library (https://www.dgl.ai)
○ Deepmind Sonnet: (https://sonnet.dev)
○ PyTorch-BIGGRAPH (https://torchbiggraph.readthedocs.io/en/latest/)
○ GraphVite Graph Embedding Library (https://graphvite.io)
○ GEM Graph Embedding Libraries (https://github.com/palash1992/GEM)
○ TorchKGE KG Embedding Library (https://torchkge.readthedocs.io)
○ AmpliGraph KG Embedding Library (https://docs.ampligraph.org/en/1.1.0/install.html)
○ Pykg2vec Embedding Library (https://github.com/Sujit-O/pykg2vec)

● General Graph Analysis:
○ NetworkX (https://networkx.github.io)
○ Graph-tool (https://graph-tool.skewed.de)

● Program for graph visualization:
○ Gephi (https://gephi.org)

https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai
https://sonnet.dev
https://torchbiggraph.readthedocs.io/en/latest/
https://graphvite.io
https://github.com/palash1992/GEM
https://torchkge.readthedocs.io
https://docs.ampligraph.org/en/1.1.0/install.html
https://github.com/Sujit-O/pykg2vec
https://networkx.github.io
https://graph-tool.skewed.de
https://gephi.org

Thank you for your
attention!

