
Hyperbolic image embeddings

November 27, 2019

1 / 15

Overview

1 Introduction

2 Hyperbolic space

3 Poincaré ball model

4 Hyperbolic neural networks

5 Delta-hyperbolicity

6 Few-shot learning

7 Experiments

2 / 15

Motivation for hyperbolic embeddings

Currently, in computer vision, many methods employ either Euclidean
or spherical embeddings
In our work, we propose to extend it to hyperbolic embeddings
Hyperbolic spaces are especially suitable for embeddings of hierarchies
We hypothesise that there can be hidden hierarchies in visual data.

Figure 1: An example of two–dimensional Poincaré embeddings computed by a
hyperbolic neural network trained on MNIST, and evaluated additionally on
Omniglot.

3 / 15

Hyperbolic space

Hyperbolic space is a space with constant negative curvature

Euclidean space has constant zero curvature

Spherical spaces have constant positive curvature

Figure 2: Triangles in spaces of different curvature. Source:
http://www.science4all.org/article/brazuca/

4 / 15

http://www.science4all.org/article/brazuca/

Poincaré ball model

In our work, we use Poincaré model of hyperbolic geometry

Poincaré ball model (Dn, gD) is manifold Dn = {x ∈ Rn : ‖x‖ < 1}
equipped with the following Riemannian metric gD

x = λ2xg
E , where

λx = 2
1−‖x‖2 – conformal factor, gE = In – Euclidean metric tensor

Poincaré ball is conformal to Euclidean space

In this model the geodesic distance between two points is given by
the following expression:

dD(x, y) = arccosh
(

1 + 2
‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
. (1)

Hyperbolic spaces are gyrovector spaces

This framework of gyrovector spaces allows to define operations as
sum, product etc. in hyperbolic spaces

5 / 15

Hyperbolic neural networks
Equivalent operations

For a pair x, y ∈ Dn
c , the Möbius addition is defined as follows:

x⊕c y =
(1 + 2c〈x, y〉+ c‖y‖2)x + (1− c‖x‖2)y

1 + 2c〈x, y〉+ c2‖x‖2‖y‖2 , (2)

c – curvature parameter; for c = 0 we recover Euclidean sum.

x

y

HypAve(x,y)

z = x⊕1 y

dD(x,
y) =

3.17

D2 = {x ∈ R2 : ‖x‖ < 1}

a

p

6 / 15

Hyperbolic neural networks
Equivalent operations

Möbius scalar multiplication is defined as:

r ⊗c x = (1/
√
c) tanh(rarctanh(

√
c‖x‖))

x

‖x‖ . (3)

Möbius matrix by vector product is as follows:

M⊗c (x) =
1√
c

tanh

(‖Mx‖
‖x‖ arctanh(

√
c‖x‖)

)
Mx

‖Mx‖ , (4)

Linear hyperbolic layer represented by mapping Mx + b is then
generalized as M⊗c (x)⊕c b.

7 / 15

Hyperbolic neural networks
Equivalent operations

The exponential map expc
x is a function from TxDn

c
∼= Rn to Dn

c ,
which is given by

expc
x(v) = x⊕c

(
tanh

(√
c
λcx‖v‖

2

)
v√
c‖v‖

)
. (5)

The inverse logarithmic map is defined as

logcx(y) =
2√
cλcx

arctanh(
√
c‖ − x⊕c y‖)

−x⊕c y

‖ − x⊕c y‖
. (6)

Hyperbolic Averaging, a substitute for averaging which is widely used
in many algorithms, is defined as

HypAve(x1, . . . , xN) =
N∑
i=1

γixi/
N∑
i=1

γi , (7)

where γi = 1√
1−c‖xi‖2

are the Lorentz factors.

8 / 15

Delta-hyperbolicity

We can estimate a degree of hyperbolicity of a dataset – δ (defined
on next slide)

This is needed to approximate a suitable radius of a ball r = 1√
c

E.g., for Euclidean case, i.e., c = 0, the corresponding radius would
be equal to infinity

c(X) =
(δP
δX

)2
, (8)

where δP = log(1 +
√

2) ∼ 0.88 – δ for Poincaré ball of radius 1

9 / 15

Delta-hyperbolicity

We need to define Gromovproduct for points x , y , z ∈ X :

(y , z)x =
1

2
(d(x , y) + d(x , z)− d(y , z)). (9)

Then δ is the minimal value such that the following four-point
condition holds for all points x , y , z ,w ∈ X :

(x , z)w ≥ min((x , y)w , (y , z)w)− δ. (10)

It suffices to find the δ for some fixed point w0

A more computational friendly way:
1 we first compute the matrix A of pairwise Gromov products
2 then, δ value is simply the largest coefficient in the matrix (A⊗A)−A,

where ⊗ denotes the min-max matrix product

A⊗ B = max
k

min{Aik ,Bkj}.

10 / 15

Delta-hyperbolicity

To make it scale-invariant, we can compute relative delta value, which
lies in [0, 1] and specifies how close is the dataset to a perfect

hyperbolic space δrel(X) = 2δ(X)
diam(X)

We measure δ values for a set of features extracted from datasets
using VGG16 network

Figure 3: The relative delta 2δ(X)diam(X) and curvature parameter values
calculated for different datasets. S2 and S2, z > 0 denote the two–dimensional
unit sphere and upper hemisphere correspondingly (1700 points were sampled
from each one)

11 / 15

Few-shot learning

We focused on the problem of few-shot learning

The concept of few-shot learning is to train the network to generalize
to unseen samples

The task is formulated as m shot n way classification problem, where
m is the number of labeled samples per class, and n is the number of
classes to classify among

12 / 15

Experimental setup

As a baseline, we took ProtoNet where one uses a so-called prototype
representation of a class, which is defined as a mean of the embedded
support set of a class

Generalizing this concept to hyperbolic space, we substitute the
Euclidean mean operation by HypAve defined earlier

We map extracted features to hyperbolic space, compute pairwise
hyperbolic distances and use HypAve operation.

13 / 15

Experiment results

Figure 4: Experimental results on two datasets: MiniImageNet and CUB averaged
over 10,000 test episodes and are reportedwith 95% confidence intervals.

14 / 15

THAT’S IT

15 / 15

	Introduction
	Hyperbolic space
	Poincaré ball model
	Hyperbolic neural networks
	Delta-hyperbolicity
	Few-shot learning
	Experiments

