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Abbreviations

m ODE — ordinary differential equation
m SDE — stochastic differential equation
m FPE — Fokker-Planck equation

m PDF — probability density function

m FFT — fast Fourier transform



Model problem



Stochastic differential equation

Consider stochastic differential equation (SDE)
dx = f(x,t)dt+ S(x, t) dg,

x=x(t)eR?, fecR?Y SecR¥4 BgeR?

where tis time, x = x(t) is a d-dimensional spatial variable and 3 is
a Brownian motion (d3d3" = Qat).

We are interested in the evolution of the probability density function
(PDF) p(x, t) of the spatial variable x(t)

X(0) ~ po(x),  x(t) ~ p(x) =7



Fokker-Planck equation

It can be shown that PDF is the solution of the related Fokker-Planck
equation (FPE)

99 d 4 5 9
== 2 g W 00D+ 300 5 [Dix D, ).

where D = 1SQS is the diffusion tensor and p(x, 0) = po(X).



Model problem

Let assume for simplicity that

S(x,)=1, Q=21 — D(x,t)=1,
where | is an d x d identity matrix.
Then equations look like

SDE: dx =f(x,t)dt+dB3, x(0) = xo,

FPE: 32 = Ap —div [f(x,t)p], p(X,0) = po(x),

and our value of interest is PDF p(x, t) at time ¢ (f > 0) on some
discrete spatial grid.



Solution strategy



Operator splitting technique

For ODE 5
8—7 =(A+B)u, u(0) = up,

with d-dimensional (d > 1) variable u at time t = h we have

u— "By,

h(A+B) o W, H h
e =I+hA+B)+ZA+ 5B +?AB+?BA+o(h2).

Some splitting techniques:
m e"(AtB) ~ eMehB - nonsymmetric splitting (1th order)
m e"(AtB) ~ TehAhB | 1 eMBehA - symmetric splitting (2th order)

m e'(A+B) ~ g2AghBezA - symmetric Strang splitting (2th order)

Stability condition: 4*A" and B+E" are negative definite.



Splitting of Fokker-Planck equation

To solve FPE 22 = Ap — div [f(x, t)p],  p(x,0) = po(x),
we consider uniform time mesh with m+ 1 points t = hk
(k=0,1,...,m) and apply 1th order splitting scheme on time step k.

Equation 1 (EQ1):

ov
o =AYV k== p(X(tc), tc)-

Equation 2 (EQ2):
ow

5 — —div[f(x,)w], Wk = Viki1.

Then we can approximate solution on the (k + 1)th step as

Pkt = Wkaq, k=0,1,....m—1.
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Solution of EQ1

To solve EQ1 on the time step k

ov

I ?
ot

AV,  Vi=pk=p(X(t), t),  Vi+1 =7,

we descritize operator on some spatial grid
A=I®l®..eD+...+DI®...®|,

where D is a one dimensional differential matrix,

and then we calculate the matrix exponent

Vk+1 = e”Avk =eh <eD R...Q eD) V.
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Solution of EQ2

To solve EQ2 on the time step k
ow

ot —div[f(x,)w], Wi = Vi1, Wi =7,

we use the fact that it looks like equation for PDF w of solution of the
ODE without noise

dx = f(x,t)dt.

It can be shown that its PDF on the spatial trajectories w(x(t), f) is
the solution of the following d + 1 dimensional system

{%’t‘ = f(x,1t)
al _ of(x,1)
= (750)
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Solution of EQ2

The system
{?3)[( = f(X, t)
ol of(x,t )
oloan — —r (U50)

with known X, and wy can be solved by a standard ODE solver for the
time f1 = (k+ 1)h.

Suppose that xi is some point of selected spatial grid, and therefore
wy is the value for this point.

But the solution for w1 will be defined on X1, not on on the
original spatial grid point xx, and hence we should interpolate
obtained values from the solution of the system to original grid.
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Discretization and interpolation scheme
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Discretization scheme

Ly - cos 4= k=0,1,...,m,
Ly - cos 2= P .
b= hk, xe = |20, j=01,....n,
) iy j=1,2,...,d.
Ly - cos nd PErenes
xor t=hk
e 0 00
t=hk+1)

We use uniform time mesh
* with m + 1 points and
Chebyshev spatial grid with
(n+ 1) points.
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Solution of EQ1 on the grid

ov
T _A
ot ~ =V
”

Vik = Pk, Vi1 =15,

As a one dimensional differential matrix D € R"*" we use Chebyshev
second order differential matrix

2n26+1’ [:0»/:07 .
.. 72”2T+17 i:n,j:n, 2, I:O_’
D[I’j]: _2(1)jx2)’ I:]’1§j<n7 Gi = 1’ 1 Sl<na
o 2, i=n,

(1) .
%(x,-l)xj7 otherwise,

where x; and x; are the corresponding points of the Chebyshev grid.
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Solution of EQ2 on the grid

0 .
al: = —div[f(x,)W], 9% _ f(x, 1)

ol of(x,t ’
Wik = Vks1, Wiyt =7, { g?'”:—tr< g’(‘))

Suppose that xx is some point of Chebyshev grid x°" and wy = wj (Xk)
is known.

If (Xk+1, Wks1) is solution of the system, then w4 is the value of w in
Xi+1 point (it is not a grid point!), and to coninue the iterative process
for the next time step, we should perform interpolation

Wk+1 = Exk+1%XK[Wk+1]
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Multidimensional Chebyshev interpolation

PDF w4 on time step k + 1 on the spatial grid x°" can be
considered as a function of d variables

.
Wit = Wit (X), X = (X1, X, ..., Xq)

Multidimensional Chebyshev interpolation formula

n [}
Wii1 & Wiy = ZZ Zah]z Jo T () T (X2) - .. Ty (Xa),

J1=1j=1 Ja=1

where T is a Chebyshev polynomial of the first kind

To(x)=1, Ti(x)=x, Th1(x)=2xTo(x)—Th-1(x), n=1,2,....
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Multidimensional Chebyshev interpolation

Interpolation coefficients can be considered as elements of a tensor

A =1, ;i 1<h<m1<p<m, ... 1<jz<ng}.

For construction of the tensor o/ we have to set equality in the
interpolation nodes

—_—
Wit (X1 iy X2 jps + -+ 5 Xdjg) = Wit (Xt jos X2 s+ -+ 5 Xdl g )
j1:1,...7n1, j2:1,...,n2, ey jd:17...,nd.

The corresponding values of w1 on the spatial grid points may be
collected in a tensor %1

W1 = {Wikp1 (X1 j, Xo gy -5 Xajy )i 1< s <nqy oo, 1 < g < ng}
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Interpolation in the Tensor Train format

We can calculate any element (ji, 2, . . . , jg) of the %), ¢ throw
solution of the system of ODEs.

It seems promising to use the multidimensional TT-cross method to
construct approximation of this tensor in the TT-format.

W (1, fos - - -5 Ja) = G1(1)%2()2) - - - Calja),

We can obtain tensor of interpolation coefficients by fast Fourier
transform (FFT) of each kernel

Slk) =5 Zp (i),

ﬂ(j’hjg, Ca ,jd) ~ ?{(ﬁ)?é(jz) . g&(jd)
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Interpolation in the Tensor Train format

If we know tensor of interpolation coefficients in TT format:

A(ftsj2s - -5 Ja) = G1(j1) () - - - Cgfa),

then we can perform a fast calculation of the w at any spatial point
zZ= [Z-|,...,Zd]—r

Z% ) Tji (21 232(12)712(22 Z?a Ja) Tj, (za)-

Ja=1
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Summary (schematic algorithm)

For the time step k + 1 with known interpolation coefficients d,ﬁ"m) of
solution p, on the time step k we perform the following
Solve spatial part of EQ2
ox —
5= (X, 1) X =x X =2,

Interpolate px to Xx using d’((fnt)

Pk = Ex"”—n?k[pk]a

Solve EQ1 v = e" (e @ ... ® €P) .
Solve PDF part of EQ2

dlogw of(x,t
8? =—tr ((ax)> s Wk = Vipt, Wi =7,

Set pk,1 values on the Chebyshev grid as w1

@ Construct interpolation coefficients Jzi,((iﬁ) for pk1
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Thanks for your attention!
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