Cross approximation of the solution of the Fokker-Planck equation

Andrei Chertkov

Skolkovo Institute of Science and Technology
Seminar of Scientific Computing Group
July 31, 2019

Table of contents

1 Model problem

2 Solution strategy

3 Discretization and interpolation scheme

Abbreviations

■ ODE - ordinary differential equation
■ SDE - stochastic differential equation
■ FPE - Fokker-Planck equation

- PDF - probability density function

■ FFT - fast Fourier transform

Outline

1 Model problem

2 Solution strategy

3 Discretization and interpolation scheme

Stochastic differential equation

Consider stochastic differential equation (SDE)

$$
\begin{gathered}
d \boldsymbol{x}=\boldsymbol{f}(\boldsymbol{x}, t) d t+S(\boldsymbol{x}, t) d \boldsymbol{\beta}, \\
\boldsymbol{x}=\boldsymbol{x}(t) \in \mathbb{R}^{d}, \quad \boldsymbol{f} \in \mathbb{R}^{d}, \quad S \in \mathbb{R}^{d \times d}, \quad \boldsymbol{\beta} \in \mathbb{R}^{d}
\end{gathered}
$$

where t is time, $\boldsymbol{x}=\boldsymbol{x}(t)$ is a d-dimensional spatial variable and $\boldsymbol{\beta}$ is a Brownian motion ($\boldsymbol{d} \boldsymbol{\beta} \boldsymbol{d} \boldsymbol{\beta}^{\top}=Q d t$).

We are interested in the evolution of the probability density function (PDF) $\rho(\boldsymbol{x}, t)$ of the spatial variable $\boldsymbol{x}(t)$

$$
\boldsymbol{x}(0) \sim \rho_{0}(\boldsymbol{x}), \quad \boldsymbol{x}(t) \sim \rho(\boldsymbol{x})=\boldsymbol{?}
$$

Fokker-Planck equation

It can be shown that PDF is the solution of the related Fokker-Planck equation (FPE)

$$
\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}=-\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left[\boldsymbol{f}_{i}(\boldsymbol{x}, t) \rho(\boldsymbol{x}, t)\right]+\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\left[D_{i j}(\boldsymbol{x}, t) \rho(\boldsymbol{x}, t)\right]
$$

where $D=\frac{1}{2} S Q S^{\top}$ is the diffusion tensor and $\rho(\boldsymbol{x}, 0)=\rho_{0}(\boldsymbol{x})$.

Model problem

Let assume for simplicity that

$$
S(x, t) \equiv I, \quad Q \equiv 2 I \quad \rightarrow \quad D(x, t) \equiv I,
$$

where I is an $d \times d$ identity matrix.

Then equations look like

SDE: $d \boldsymbol{x}=\boldsymbol{f}(\boldsymbol{x}, t) d t+d \boldsymbol{\beta}, \quad x(0)=x_{0}$,

FPE: $\frac{\partial \rho}{\partial t}=\Delta \rho-\operatorname{div}[\boldsymbol{f}(\boldsymbol{x}, t) \rho], \quad \rho(x, 0)=\rho_{0}(x)$,
and our value of interest is PDF $\rho(\boldsymbol{x}, t)$ at time $t(t>0)$ on some discrete spatial grid.

Outline

1 Model problem

2 Solution strategy

3 Discretization and interpolation scheme

Operator splitting technique

For ODE

$$
\frac{\partial \boldsymbol{u}}{\partial t}=(A+B) \boldsymbol{u}, \quad \boldsymbol{u}(0)=\boldsymbol{u}_{0}
$$

with d-dimensional $(d>1)$ variable \boldsymbol{u} at time $t=h$ we have

$$
\begin{gathered}
\boldsymbol{u}=e^{h(A+B)} \boldsymbol{u}_{0}, \\
e^{h(A+B)}=I+h(A+B)+\frac{h^{2}}{2} A^{2}+\frac{h^{2}}{2} B^{2}+\frac{h^{2}}{2} A B+\frac{h^{2}}{2} B A+o\left(h^{2}\right) .
\end{gathered}
$$

Some splitting techniques:
$\square e^{h(A+B)} \approx e^{h A} e^{h B}$ - nonsymmetric splitting (1th order)
■ $e^{h(A+B)} \approx \frac{1}{2} e^{h A} e^{h B}+\frac{1}{2} e^{h B} e^{h A}$ - symmetric splitting (2th order)
$\square e^{h(A+B)} \approx e^{\frac{h}{2} A} e^{h B} e^{\frac{h}{2} A}$ - symmetric Strang splitting (2th order)

Stability condition: $\frac{A+A^{\top}}{2}$ and $\frac{B+B^{\top}}{2}$ are negative definite.

Splitting of Fokker-Planck equation

To solve FPE $\frac{\partial \rho}{\partial t}=\Delta \rho-\operatorname{div}[\boldsymbol{f}(\boldsymbol{x}, t) \rho], \quad \rho(x, 0)=\rho_{0}(x)$, we consider uniform time mesh with $m+1$ points $t_{k}=h k$ ($k=0,1, \ldots, m$) and apply 1 th order splitting scheme on time step k.

Equation 1 (EQ1):

$$
\frac{\partial v}{\partial t}=\Delta v, \quad v_{k}=\rho_{k}=\rho\left(\boldsymbol{x}\left(t_{k}\right), t_{k}\right)
$$

Equation 2 (EQ2):

$$
\frac{\partial w}{\partial t}=-\operatorname{div}[f(\boldsymbol{x}, t) w], \quad w_{k}=v_{k+1} .
$$

Then we can approximate solution on the $(k+1)$ th step as

$$
\rho_{k+1}=w_{k+1}, \quad k=0,1, \ldots, m-1 .
$$

Solution of EQ1

To solve EQ1 on the time step k

$$
\frac{\partial v}{\partial t}=\Delta v, \quad v_{k}=\rho_{k}=\rho\left(\boldsymbol{x}\left(t_{k}\right), t_{k}\right), \quad v_{k+1}=?
$$

we descritize operator on some spatial grid

$$
\Delta=I \otimes I \otimes \ldots \otimes D+\ldots+D \otimes I \otimes \ldots \otimes I
$$

where D is a one dimensional differential matrix,
and then we calculate the matrix exponent

$$
v_{k+1}=e^{h \Delta} v_{k}=e^{h}\left(e^{D} \otimes \ldots \otimes e^{D}\right) v_{k}
$$

Solution of EQ2

To solve EQ2 on the time step k

$$
\frac{\partial w}{\partial t}=-\operatorname{div}[f(\boldsymbol{x}, t) w], \quad w_{k}=v_{k+1}, \quad w_{k+1}=?
$$

we use the fact that it looks like equation for PDF w of solution of the ODE without noise

$$
d \boldsymbol{x}=\boldsymbol{f}(\boldsymbol{x}, t) d t
$$

It can be shown that its PDF on the spatial trajectories $w(\boldsymbol{x}(t), t)$ is the solution of the following $d+1$ dimensional system

$$
\left\{\begin{array}{l}
\frac{\partial \boldsymbol{x}}{\partial t}=\boldsymbol{f}(\boldsymbol{x}, t) \\
\frac{\partial \log w}{\partial t}=-\operatorname{tr}\left(\frac{\partial f(\boldsymbol{x}, t)}{\partial \boldsymbol{x}}\right)
\end{array}\right.
$$

Solution of EQ2

The system

$$
\left\{\begin{array}{l}
\frac{\partial \boldsymbol{x}}{\partial t}=\boldsymbol{f}(\boldsymbol{x}, t) \\
\frac{\partial \log w}{\partial t}=-\operatorname{tr}\left(\frac{\partial f(\boldsymbol{x}, t)}{\partial \boldsymbol{x}}\right)
\end{array}\right.
$$

with known \boldsymbol{x}_{k} and w_{k} can be solved by a standard ODE solver for the time $t_{k+1}=(k+1) h$.

Suppose that \boldsymbol{x}_{k} is some point of selected spatial grid, and therefore w_{k} is the value for this point.

But the solution for w_{k+1} will be defined on \boldsymbol{x}_{k+1}, not on on the original spatial grid point \boldsymbol{x}_{k}, and hence we should interpolate obtained values from the solution of the system to original grid.

Outline

1 Model problem

2 Solution strategy

3 Discretization and interpolation scheme

Discretization scheme

$$
t_{k}=h k, \quad x_{i_{1}, i_{2}, \ldots, i_{d}}^{c h}=\left[\begin{array}{c}
L_{1} \cdot \cos \frac{i_{1} \pi}{n_{1}} \\
L_{2} \cdot \cos \frac{i_{2} \pi}{n_{2}} \\
\ldots \\
L_{d} \cdot \cos \frac{i_{d} \pi}{n_{d}}
\end{array}\right]
$$

$$
\begin{aligned}
k & =0,1, \ldots, m \\
i_{j} & =0,1, \ldots, n_{j} \\
j & =1,2, \ldots, d
\end{aligned}
$$

We use uniform time mesh with $m+1$ points and Chebyshev spatial grid with $(n+1)^{d}$ points.

Solution of EQ1 on the grid

$$
\begin{gathered}
\frac{\partial v}{\partial t}=\Delta v \\
v_{k}=\rho_{k}, \quad v_{k+1}=?
\end{gathered}
$$

$$
v_{k+1}=e^{h}\left(e^{D} \otimes \ldots \otimes e^{D}\right) v_{k} .
$$

As a one dimensional differential matrix $D \in \mathbb{R}^{n \times n}$ we use Chebyshev second order differential matrix

$$
D[i, j]=\left\{\begin{array}{ll}
\frac{2 n^{2}+1}{6}, & i=0, j=0, \\
-\frac{2 n^{2}+1}{6}, & i=n, j=n, \\
-\frac{x_{j}}{2\left(-x_{i}^{2}\right)}, & i=j, 1 \leq j<n, \\
\frac{c_{i}}{c_{j}} \frac{(-1)^{i}+j}{x_{i}-x_{j}}, & \text { otherwise },
\end{array} \quad c_{i}= \begin{cases}2, & i=0, \\
1, & 1 \leq i<n, \\
2, & i=n,\end{cases}\right.
$$

where x_{i} and x_{j} are the corresponding points of the Chebyshev grid.

Solution of EQ2 on the grid

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}=-\operatorname{div}[f(\boldsymbol{x}, t) w], \\
w_{k}=v_{k+1}, \quad w_{k+1}=?,
\end{array} \quad\left\{\begin{array}{l}
\frac{\partial \boldsymbol{x}}{\partial t}=\boldsymbol{f}(\boldsymbol{x}, t) \\
\frac{\partial \log w}{\partial t}=-\operatorname{tr}\left(\frac{\partial f(\boldsymbol{x}, t)}{\partial \boldsymbol{x}}\right)
\end{array}\right.
$$

Suppose that \boldsymbol{x}_{k} is some point of Chebyshev grid $x^{c h}$ and $w_{k}=w_{k}\left(\boldsymbol{x}_{k}\right)$ is known.

If $\left(\boldsymbol{x}_{k+1}, w_{k+1}\right)$ is solution of the system, then w_{k+1} is the value of w in \boldsymbol{x}_{k+1} point (it is not a grid point!), and to coninue the iterative process for the next time step, we should perform interpolation

$$
\overline{w_{k+1}}=E_{\boldsymbol{x}_{k+1} \rightarrow \boldsymbol{x}_{k}}\left[w_{k+1}\right]
$$

Multidimensional Chebyshev interpolation

PDF w_{k+1} on time step $k+1$ on the spatial grid $x^{c h}$ can be considered as a function of d variables

$$
w_{k+1}=w_{k+1}(\boldsymbol{x}), \quad \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)^{\top}
$$

Multidimensional Chebyshev interpolation formula

$$
w_{k+1} \approx \widehat{w_{k+1}}=\sum_{j_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{2}} \ldots \sum_{j_{d}=1}^{n_{d}} a_{j_{1} j_{2} \ldots j_{d}} T_{j_{1}}\left(x_{1}\right) T_{j_{2}}\left(x_{2}\right) \ldots T_{j_{d}}\left(x_{d}\right),
$$

where T is a Chebyshev polynomial of the first kind

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n=1,2, \ldots
$$

Multidimensional Chebyshev interpolation

Interpolation coefficients can be considered as elements of a tensor

$$
\mathscr{A}=\left\{a_{j_{1 j} j_{2} \ldots j_{d}} ; 1 \leq j_{1} \leq n_{1}, 1 \leq j_{2} \leq n_{2}, \ldots, 1 \leq j_{d} \leq n_{d}\right\} .
$$

For construction of the tensor \mathscr{A} we have to set equality in the interpolation nodes

$$
\begin{aligned}
& \widehat{w_{k+1}}\left(x_{1, j_{1}}, x_{2, j_{2}}, \ldots, x_{d, j_{d}}\right)=w_{k+1}\left(x_{1, j_{1}}, x_{2, j_{2}}, \ldots, x_{d, j_{d}}\right), \\
& j_{1}=1, \ldots, n_{1}, \quad j_{2}=1, \ldots, n_{2}, \ldots, \quad j_{d}=1, \ldots, n_{d} .
\end{aligned}
$$

The corresponding values of w_{k+1} on the spatial grid points may be collected in a tensor \mathbb{W}_{k+1}

$$
\mathscr{W}_{k+1}=\left\{w_{k+1}\left(x_{1, j_{1}}, x_{2, j_{2}}, \ldots, x_{d, j_{d}}\right) ; 1 \leq j_{1} \leq n_{1}, \ldots, 1 \leq j_{d} \leq n_{d}\right\}
$$

Interpolation in the Tensor Train format

We can calculate any element $\left(j_{1}, j_{2}, \ldots, j_{d}\right)$ of the \mathscr{W}_{k+1} throw solution of the system of ODEs.

It seems promising to use the multidimensional TT-cross method to construct approximation of this tensor in the TT-format.

$$
\mathscr{W}\left(j_{1}, j_{2}, \ldots, j_{d}\right) \approx \mathscr{G}_{1}\left(j_{1}\right) \mathscr{G}_{2}\left(j_{2}\right) \ldots \mathscr{G}_{d}\left(j_{d}\right),
$$

We can obtain tensor of interpolation coefficients by fast Fourier transform (FFT) of each kernel

$$
\begin{gathered}
\mathscr{G}_{k}\left(j_{k}\right) \stackrel{\mathrm{FFT}}{\longrightarrow} \mathscr{G}_{k}^{\prime}\left(j_{k}\right), \\
\mathscr{A}\left(j_{1}, j_{2}, \ldots, j_{d}\right) \approx \mathscr{G}_{1}^{\prime}\left(j_{1}\right) \mathscr{G}_{2}^{\prime}\left(j_{2}\right) \ldots \mathscr{G}_{d}^{\prime}\left(j_{d}\right) .
\end{gathered}
$$

Interpolation in the Tensor Train format

If we know tensor of interpolation coefficients in TT format:

$$
\mathscr{A}\left(j_{1}, j_{2}, \ldots, j_{d}\right) \approx \mathscr{G}_{1}^{\prime}\left(j_{1}\right) \mathscr{G}_{2}^{\prime}\left(j_{2}\right) \ldots \mathscr{G}_{d}^{\prime}\left(j_{d}\right)
$$

then we can perform a fast calculation of the w at any spatial point $\boldsymbol{z}=\left[z_{1}, \ldots, z_{d}\right]^{\top}$

$$
w(\boldsymbol{z}) \approx \sum_{j_{1}=1}^{n_{1}} \mathscr{G}_{1}^{\prime}\left(j_{1}\right) T_{j_{1}}\left(z_{1}\right) \sum_{j_{2}=1}^{n_{2}} \mathscr{G}_{2}^{\prime}\left(j_{2}\right) T_{j_{2}}\left(z_{2}\right) \ldots \sum_{j_{d}=1}^{n_{d}} \mathscr{G}_{d}^{\prime}\left(j_{d}\right) T_{j_{d}}\left(z_{d}\right) .
$$

Summary (schematic algorithm)

For the time step $k+1$ with known interpolation coefficients $\mathscr{A}_{k}^{(\text {int })}$ of solution ρ_{k} on the time step k we perform the following
1 Solve spatial part of EQ2

$$
\frac{\partial \boldsymbol{x}}{\partial t}=\boldsymbol{f}(\boldsymbol{x}, t) \quad \boldsymbol{x}_{k+1}=x^{c h}, \quad \widehat{\boldsymbol{x}_{k}}=?
$$

2 Interpolate ρ_{k} to $\widehat{\boldsymbol{x}_{k}}$ using $\mathscr{A}_{k}^{(\text {int })}$

$$
\overline{\rho_{k}}=E_{x^{c h} \rightarrow \widehat{\mathbf{x}_{k}}}\left[\rho_{k}\right],
$$

3 Solve EQ1 $v_{k+1}=e^{h}\left(e^{D} \otimes \ldots \otimes e^{D}\right) \overline{\rho_{k}}$.
4 Solve PDF part of EQ2

$$
\frac{\partial \log w}{\partial t}=-\operatorname{tr}\left(\frac{\partial f(\boldsymbol{x}, t)}{\partial \boldsymbol{x}}\right), \quad w_{k}=v_{k+1}, \quad w_{k+1}=?
$$

5 Set ρ_{k+1} values on the Chebyshev grid as w_{k+1}
6 Construct interpolation coefficients $\mathscr{A}_{k+1}^{(\text {int })}$ for ρ_{k+1}

Thanks for your attention!

