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Abbreviations

ODE — ordinary differential equation
SDE — stochastic differential equation
FPE — Fokker-Planck equation
PDF — probability density function
FFT — fast Fourier transform
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Stochastic differential equation

Consider stochastic differential equation (SDE)

dx = f (x , t) dt + S(x , t) dβ,

x = x(t) ∈ Rd , f ∈ Rd , S ∈ Rd×d , β ∈ Rd

where t is time, x = x(t) is a d-dimensional spatial variable and β is
a Brownian motion (dβ dβ> = Qdt).

We are interested in the evolution of the probability density function
(PDF) ρ(x , t) of the spatial variable x(t)

x(0) ∼ ρ0(x), x(t) ∼ ρ(x) =?
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Fokker-Planck equation

It can be shown that PDF is the solution of the related Fokker-Planck
equation (FPE)

∂ρ(x , t)
∂t

= −
d∑

i=1

∂

∂xi
[fi (x , t)ρ(x , t)] +

d∑
i=1

d∑
j=1

∂

∂xi

∂

∂xj

[
Dij (x , t)ρ(x , t)

]
,

where D = 1
2 SQS> is the diffusion tensor and ρ(x ,0) = ρ0(x).
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Model problem
Let assume for simplicity that

S(x , t) ≡ I, Q ≡ 2I → D(x , t) ≡ I,

where I is an d × d identity matrix.

Then equations look like

SDE: dx = f (x , t) dt + dβ, x(0) = x0,

FPE: ∂ρ∂t = ∆ρ− div [f (x , t)ρ] , ρ(x ,0) = ρ0(x),

and our value of interest is PDF ρ(x , t) at time t (t > 0) on some
discrete spatial grid.
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Operator splitting technique
For ODE

∂u
∂t

= (A + B)u, u(0) = u0,

with d-dimensional (d > 1) variable u at time t = h we have

u = eh(A+B)u0,

eh(A+B) = I + h(A + B) +
h2

2
A2 +

h2

2
B2 +

h2

2
AB +

h2

2
BA + o(h2).

Some splitting techniques:
eh(A+B) ≈ ehAehB - nonsymmetric splitting (1th order)
eh(A+B) ≈ 1

2 ehAehB + 1
2 ehBehA - symmetric splitting (2th order)

eh(A+B) ≈ e
h
2 AehBe

h
2 A - symmetric Strang splitting (2th order)

Stability condition: A+A>

2 and B+B>

2 are negative definite.
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Splitting of Fokker-Planck equation
To solve FPE ∂ρ

∂t = ∆ρ− div [f (x , t)ρ] , ρ(x ,0) = ρ0(x),
we consider uniform time mesh with m + 1 points tk = hk
(k = 0,1, . . . ,m) and apply 1th order splitting scheme on time step k .

Equation 1 (EQ1):
∂v
∂t

= ∆v , vk = ρk = ρ(x(tk ), tk ).

Equation 2 (EQ2):
∂w
∂t

= −div [f (x , t)w ] , wk = vk+1.

Then we can approximate solution on the (k + 1)th step as

ρk+1 = wk+1, k = 0,1, . . . ,m − 1.

.
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Solution of EQ1

To solve EQ1 on the time step k

∂v
∂t

= ∆v , vk = ρk = ρ(x(tk ), tk ), vk+1 =?,

we descritize operator on some spatial grid

∆ = I ⊗ I ⊗ . . .⊗ D + . . .+ D ⊗ I ⊗ . . .⊗ I,

where D is a one dimensional differential matrix,

and then we calculate the matrix exponent

vk+1 = eh∆vk = eh
(

eD ⊗ . . .⊗ eD
)

vk .
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Solution of EQ2

To solve EQ2 on the time step k

∂w
∂t

= −div [f (x , t)w ] , wk = vk+1, wk+1 =?,

we use the fact that it looks like equation for PDF w of solution of the
ODE without noise

dx = f (x , t) dt .

It can be shown that its PDF on the spatial trajectories w(x(t), t) is
the solution of the following d + 1 dimensional system{

∂x
∂t = f (x , t)
∂ log w
∂t = −tr

(
∂f (x,t)
∂x

) .
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Solution of EQ2

The system {
∂x
∂t = f (x , t)
∂ log w
∂t = −tr

(
∂f (x,t)
∂x

) ,

with known xk and wk can be solved by a standard ODE solver for the
time tk+1 = (k + 1)h.

Suppose that xk is some point of selected spatial grid, and therefore
wk is the value for this point.

But the solution for wk+1 will be defined on xk+1, not on on the
original spatial grid point xk , and hence we should interpolate
obtained values from the solution of the system to original grid.
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Discretization scheme

tk = hk , xch
i1,i2,...,id =


L1 · cos i1π

n1

L2 · cos i2π
n2

. . .

Ld · cos idπ
nd



x1

x2 t = hk

t = h(k + 1)

k = 0,1, . . . ,m,

ij = 0,1, . . . ,nj ,

j = 1,2, . . . ,d .

We use uniform time mesh
with m + 1 points and
Chebyshev spatial grid with
(n + 1)d points.
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Solution of EQ1 on the grid

∂v
∂t

= ∆v ,

vk = ρk , vk+1 =?,
vk+1 = eh

(
eD ⊗ . . .⊗ eD

)
vk .

As a one dimensional differential matrix D ∈ Rn×n we use Chebyshev
second order differential matrix

D[i , j] =



2n2+1
6 , i = 0, j = 0,
− 2n2+1

6 , i = n, j = n,
− xj

2(1−x2
j )
, i = j , 1 ≤ j < n,

ci
cj

(−1)i+j

xi−xj
, otherwise,

ci =


2, i = 0,
1, 1 ≤ i < n,
2, i = n,

where xi and xj are the corresponding points of the Chebyshev grid.
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Solution of EQ2 on the grid

∂w
∂t

= −div [f (x , t)w ] ,

wk = vk+1, wk+1 =?,

{
∂x
∂t = f (x , t)
∂ log w
∂t = −tr

(
∂f (x,t)
∂x

) ,

Suppose that xk is some point of Chebyshev grid xch and wk = wk (xk )
is known.

If (xk+1,wk+1) is solution of the system, then wk+1 is the value of w in
xk+1 point (it is not a grid point!), and to coninue the iterative process
for the next time step, we should perform interpolation

wk+1 = Exk+1→xk [wk+1]
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Multidimensional Chebyshev interpolation

PDF wk+1 on time step k + 1 on the spatial grid xch can be
considered as a function of d variables

wk+1 = wk+1(x), x = (x1, x2, . . . , xd )> .

Multidimensional Chebyshev interpolation formula

wk+1 ≈ ŵk+1 =

n1∑
j1=1

n2∑
j2=1

. . .

nd∑
jd =1

aj1 j2...jd Tj1 (x1)Tj2 (x2) . . .Tjd (xd ),

where T is a Chebyshev polynomial of the first kind

T0(x) = 1, T1(x) = x , Tn+1(x) = 2xTn(x)−Tn−1(x), n = 1,2, . . . .
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Multidimensional Chebyshev interpolation

Interpolation coefficients can be considered as elements of a tensor

A = {aj1 j2...jd ; 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, . . . , 1 ≤ jd ≤ nd}.

For construction of the tensor A we have to set equality in the
interpolation nodes

ŵk+1(x1,j1 , x2,j2 , . . . , xd,jd ) = wk+1(x1,j1 , x2,j2 , . . . , xd,jd ),

j1 = 1, . . . ,n1, j2 = 1, . . . ,n2, . . . , jd = 1, . . . ,nd .

The corresponding values of wk+1 on the spatial grid points may be
collected in a tensor Wk+1

Wk+1 = {wk+1(x1,j1 , x2,j2 , . . . , xd,jd ); 1 ≤ j1 ≤ n1, . . . , 1 ≤ jd ≤ nd}
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Interpolation in the Tensor Train format

We can calculate any element (j1, j2, . . . , jd ) of the Wk+1 throw
solution of the system of ODEs.

It seems promising to use the multidimensional TT-cross method to
construct approximation of this tensor in the TT-format.

W(j1, j2, . . . , jd ) ≈ G1(j1)G2(j2) . . .Gd (jd ),

We can obtain tensor of interpolation coefficients by fast Fourier
transform (FFT) of each kernel

Gk (jk )
FFT−−→ G′k (jk ),

A(j1, j2, . . . , jd ) ≈ G′1(j1)G′2(j2) . . .G′d (jd ).
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Interpolation in the Tensor Train format

If we know tensor of interpolation coefficients in TT format:

A(j1, j2, . . . , jd ) ≈ G′1(j1)G′2(j2) . . .G′d (jd ),

then we can perform a fast calculation of the w at any spatial point
z = [z1, . . . , zd ]>

w(z) ≈
n1∑

j1=1

G′1(j1)Tj1 (z1)

n2∑
j2=1

G′2(j2)Tj2 (z2) . . .

nd∑
jd =1

G′d (jd )Tjd (zd ).
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Summary (schematic algorithm)
For the time step k + 1 with known interpolation coefficients A

(int)
k of

solution ρk on the time step k we perform the following

1 Solve spatial part of EQ2

∂x
∂t

= f (x , t) xk+1 = xch, x̂k =?,

2 Interpolate ρk to x̂k using A
(int)
k

ρk = Exch→x̂k
[ρk ],

3 Solve EQ1 vk+1 = eh
(
eD ⊗ . . .⊗ eD

)
ρk .

4 Solve PDF part of EQ2

∂ log w
∂t

= −tr
(
∂f (x , t)
∂x

)
, wk = vk+1, wk+1 =?,

5 Set ρk+1 values on the Chebyshev grid as wk+1

6 Construct interpolation coefficients A
(int)
k+1 for ρk+1

22 / 23



Thanks for your attention!
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