Microstructure Synthesis via Neural Networks

Daria Fokina

Skoltech

July, 2019

Background

Microstructure - structure, that can be observed under the microscope

Microstructures are studied in:

- Medicine
- Space technologies
- Oil industry

Ceramics

Titanium alloy

The problem – upscaling

Soil slice

https://www.doitpoms.ac.uk https://www.researchgate.net https://www.researchgate.net Aim

Reconstructed image

Considered structure

Key points

- Microstructures have stochastic nature and can be viewed as a realisation of a random variable
- Multiscale modelling techniques are widely used for microstructures:
 - for modelling the response and life prediction of composite materials (C.Oskay, 2015)
 - for flow estimation in porous media (Ronaldo Giro, 2018)
 - for modelling of crack propagation in random heterogeneous media (Darith–Anthony Hun et al., 2019)

Style-GAN

- Number of layers increases during training
- Maximal resolution on the train set 256x256

StyleGAN architecture

Progressive Growing of GANs for Improved Quality, Stability, and Variation

Style-GAN

- Style feature y for AdalN operation: AdalN(x_i , y) = $y_{s,i} \frac{x_i - \mu(x_i)}{\sigma(x_i)} + y_{b,i}$
- Size of the output is equal to the size of train images
- Increase of size via image quilting

StyleGAN generator scheme A - affine transform, B - per-channel scaling of noise

A Style-Based Generator Architecture for Generative Adversarial Networks

Image quilting

Image stacking without quilting

Image stacking with quilting

Image quilting

- Quilting paths paths, minimising error on the overlap between two images
- Minimal error on (i,j)-th pixel of overlap:

Minimum boundary cut

$$E_{i,j} = \begin{cases} e_{i,j}, \ j = 0\\ e_{i,j} + \min(E_{(i-1),j}; E_{(i-1),(j-1)}; E_{(i-1),(j+1)}), \text{ otherwise} \end{cases}$$

 $e_{i,j} = (x_{i,j} - y_{i,j})^2,$ $x_{i,j}, y_{i,j}$ - (i,j)-th pixel of image 1 and 2 correspondingly

Wang tilings

• The plane is covered with tilings chosen randomly from a set of 16 tilings with 4 colors of edges

Process of tiles design

Aperiodic Compression and Reconstruction of Real World Material Systems Based on Wang Tiles

Experiments

Used structures

Alporas aluminium foam

Berea sandstone

Ketton limestone

Estimated values

Mechanical properties

- Poisson's ratio (ν)
- Young's modulus (E)

Minkowski functionals:

- Area density
- Perimeter density
- Euler2D density

Visual comparison of the results

Original image

Texture networks

Periodic unit cell (PUC)

Spatial GAN

Wang tilings

Style-GAN

Visual comparison of the results Alporas

Original image

Wang tilings result

Visual comparison of the results Alporas

Original image

Style-GAN result

Numerical results Mechanical properties

	Method		
	Original image	PUC	Wang tilings
E	0.0988 ± 0.0032	0.0966 ± 0.0112	0.0950 ± 0.0054
ν	0.3507 ± 0.0047	0.3460 ± 0.0190	0.3331 ± 0.0094

	Texture Networks	Spatial GAN	Style-GAN
E	0.0826 ± 0.0013	0.1120 ± 0.0094	0.0958 ± 0.0025
u	0.3191 ± 0.0049	0.3266 ± 0.0129	0.3634 ± 0.0084

Visual comparison of the results Berea

Original image

Wang tilings result

Style-GAN result

Visual comparison of the results Ketton

Original image

Wang tilings result

Style-GAN result

Numerical results

Minkowski functionals

Berea

	Original image	Wang tilings	Style-GAN
Area	0.7970 ± 0.0528	0.8292 ± 0.0481	0.8167 ± 0.0046
Perimeter	0.0633 ± 0.0073	0.0653 ± 0.0115	0.0667 ± 0.0030
Euler2D	-0.0009 ± 0.0004	-0.0017 ± 0.0005	-0.0013 ± 0.0002

Ketton

	Original image	Wang tilings	Style-GAN
Area	0.8753 ± 0.0206	0.9149 ± 0.0323	0.9112 ± 0.0167
Perimeter	0.0501 ± 0.0054	0.0409 ± 0.0127	0.0438 ± 0.0059
Euler2D	-0.0008 ± 0.0003	-0.0010 ± 0.0004	-0.0011 ± 0.0003

Thank you for attention!

Appendix: Mechanical properties computation

Linear elastic equation

$$-\nabla(C^{base}: [\epsilon(w^{kl}) + e^{kl}]) = 0 \text{ in } Y,$$

where $\epsilon(w^{kl})$ is unknown strain tensor,

$$C^{base}\tau = 2\mu(\tau - \lambda \operatorname{tr}(\tau)I) \cdot \rho, \quad (C:\epsilon)_{ij} = \sum_{k,l} C_{ijkl}\epsilon_{kl},$$

$$e^{kl} = \frac{1}{2}(e_k \otimes e_l + e_l \otimes e_k), \quad e_k \text{ - column of identity matrix,}$$

$$\mu = E/(2(1 + nu)), \quad \lambda = E\nu/(1 - \nu^2), \quad E = 1.0, \quad \nu = 0.3,$$

$$\rho \text{ - material density}$$

Appendix: Mechanical properties computation

Homogenised elasticity tensor:

$$C_{ijkl}^{H} = \frac{1}{|Y|} \int_{\omega} (e^{ij} + \epsilon(w^{ij}(y))) : C^{base} : (e^{ij} + \epsilon(w^{ij}(y)))dy$$

where:

$$C^{base}\tau = 2\mu(\tau - \lambda \mathrm{tr}(\tau)I) \cdot \rho,$$

$$\mu = E/(2(1 + \nu)), \ \lambda = E\nu/(a - \nu^2),$$

$$E = 1.0, \nu = 0.3$$

Appendix: Minkowski functionals

Three functionals for two-dimensional structure:

- Area
- Perimeter
- Euler characteristic $\chi = V E + F$, V number of vertices,
- *E* number of edges, *F* number of regions