Enhancement of artificial neural networks based on H^{2}-matrices

Daria Sushnikova

Coauthors: Pavel Kharyuk, Ivan Oseledets

Skoltech, Moscow

May 16, 2019

Weighted sum

Sources $x=\left\{x_{i}\right\}_{i=1 \ldots N}, x_{i} \in \mathbb{R}^{d}$, receivers $y=\left\{y_{i}\right\}_{j=1 \ldots N}$, $y_{j} \in \mathbb{R}^{d}, d=1,2,3$.

$$
\begin{equation*}
y_{i}=\sum_{j=1}^{N} a_{i j} x_{j} \tag{1}
\end{equation*}
$$

- N-body problem;
- Discretization of Integral equation (IE).

$$
y=A x
$$

Computation - $\mathcal{O}\left(N^{2}\right)$ operations. Storage - $\mathcal{O}\left(N^{2}\right)$ items of memory.
Our goal: reduce the computation and storage complexity to $\mathcal{O}(N)$

Separation property

If sets $\hat{x} \in \mathbb{R}^{P}, \hat{y} \in \mathbb{R}^{K}$ - spatially separated:

$$
\hat{y}=\widehat{A} \hat{x}, \quad \widehat{A} \in \mathbb{R}^{K \times P}
$$

has approximate low rank.

- Works both for N-body problem;
- Works for IEs with smooth kernels

Hierarchical grid

(a) Hierarchical division of the grid.

(b) Close and far blocks.

Close and far blocks

$$
y=A x=C x+F_{L} x
$$

Figure 2: Matrix A

Bottom-level compression

$$
F_{i j} \approx \widetilde{U}_{i} \widetilde{F}_{i j} \widetilde{V}_{j}, \quad \forall i, j \in 1, \ldots, M_{L}
$$

Figure 3: Matrix F_{L}

Bottom-level compression

$$
y=C x+U_{L} \widehat{M}_{L} V_{L} x
$$

Interaction list

Far block is in interaction list on level / if the block that contains it on level $/-1$ is a close block.

Figure 4: Matrix \widehat{M}_{L}

$$
y=C x+U_{L} M_{L} V_{L} x+U_{L} F_{L-1} V_{L} x .
$$

Level compression

Repeat the compression procedure for matrix F_{L-1}.

Figure 5: Matrix F_{L-1}

Repeat the compression till the level $I=1$. Obtain:

$$
y=C x+\sum_{l=L}^{1} U_{l} M_{l} V_{l} x
$$

\mathcal{H}^{2} matrix by vector product

$$
y=C x+\sum_{l=L}^{1} U_{l} M_{l} V_{l} x
$$

NN architecture based on \mathcal{H}^{2} matrix

- x, y - samples;
- $C, U_{l}, M_{l}, V_{l}, I \in 1 \ldots L$ - unknowns;
- Duplicate each block in $C, M_{l}, I \in 1 \ldots L$
- Add nonlinearity

(a) $\hat{y}_{1}=g\left(\widehat{C}_{11} * \widehat{C}_{11} * \widehat{C}_{11} * \hat{x}_{1}\right)$
(b) $\mathcal{H}^{2}-\mathrm{NN}$

Alternative idea of \mathcal{H}^{2} to NN transformation: [Fan Y . et al. A multiscale neural network based on hierarchical nested bases //Research in the Mathematical Sciences. 2019. . 6. . 2. . 21.]

Building \mathcal{H}^{2}-nn architecture for given x, y

1. If grid for x and y is known:

- Define separation criterion
- Define rank $r<B$
- Repeat \mathcal{H}^{2} building procedure, writing block sizes instead of blocks.

2. If grid for x and y is unknown: assume tensor grid of the same dimension and go to 1 ;

Motivation

Useful if:

- Direct solution of problem $F(x)=y$ is resource intensive;
- Operator F is unknown;
- Operator F is nonlinear;

Experiments

Radiative transfer equation (RTE)

PDE:

$v \nabla_{x} \varphi(x, v)+\mu_{t}(x, v)=\mu_{s}(x) u(x)+f(x), \quad$ in $\Omega \times \mathcal{S}^{d-1}, \Omega \in \mathcal{R}^{d}$, $\varphi(x, v)=0$, on $\left\{(x, v) \in \partial \Omega \times \mathcal{S}^{d-1}: n(x) \dot{v}<0\right\}$,
$u(x)=\frac{1}{4 \pi} \int_{\mathcal{S}^{d-1}} \varphi(x, v) d v$
IE:

$$
u(x)=\mathcal{I}\left(\mu_{s}(x)\right)
$$

Mapping:

$$
\mu_{s}(x) \rightarrow u(x)
$$

Experiments

Radiative transfer equation (RTE)

loss_values

N	h2nn	MNN- $\mathcal{H}^{2}-$ Mix
320	Train: 0.02350, Test: 0.02346	Train: 0.01197, Test: 0.01196
640	Train: 0.02676 , Test: 0.02687	Train: 0.06179, Test: 0.06381
1280	Train: 0.03240, Test: 0.03233	Train: 0.12397 , Test: 0.12510778

Counter example

$$
a_{i j}=\frac{1}{\left\|x_{i}-y_{j}\right\|}+f(i, j)
$$

Experiments

Counter example

N	h2nn	MNN- \mathcal{H}^{2}-Mix
320	Train:0.00790, Test: 0.00789	Train: 0.00857 , Test: 0.00858
640	Train: 0.00424, Test: 0.00425	Train: 0.14413 , Test: 0.14592
1280	Train: 0.01464, Test: 0.00425	Train: 0.19069 , Test: 0.19070

Experiments

(a) RTE memory comparison

(c) RTE error comparison
(b) CE memory comparison

(d) CE error comparison

