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Discrete-Discrete Optimal Transport

• Point clouds:

{xi}m
i=1 and {yi}n

i=1

• Let ri be the mass of xi,
and cj be the desired mass
of yj

• Mij is the cost of moving a
unit mass from xi to yj
(ground cost matrix)

• We want to transport
masses in an optimal way

÷
? :
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Optimal Transport

Let r ∈ Σm and c ∈ Σn be the vectors which correspond to
the mass of each point, where Σd ≜ {x ∈ Rd

+ : x⊤1d = 1}
Each transportation plan is defined by a matrix from

U(r, c) ≜ {P ∈ Rm×n
+ : P1n = r,P⊤1m = c}

Mij is the cost of moving a unit mass from xi to yj

Optimal Transport distance:

dM(r, c) ≜ min
P∈U(r,c)

⟨P,M ⟩
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Drawbacks: Ill-Posedness

dM(r, c) ≜ min
P∈U(r,c)

⟨P,M ⟩

✓ a solution exists
× the solution is not unique
× the solution is “unstable”
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Drawbacks: Complexity

Definition
f(n) ∈ Õ(h(n)), when ∃k ∈ N: f(n) ∈ O(h(n) logk h(n))

Optimal Transport Complexity
Best theoretical: Õ(n2.5) [Lee & Sidford, 2014]
Best practical: Õ(n3) [e.g., min cost flow solver]
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Example: Word Mover’s Distance

OT distance is a perfect tool to define a distance between sets, consisting
of metric space objects

From Word Embeddings To Document Distances
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Abstract

We present the Word Mover’s Distance (WMD),
a novel distance function between text docu-
ments. Our work is based on recent results in
word embeddings that learn semantically mean-
ingful representations for words from local co-
occurrences in sentences. The WMD distance
measures the dissimilarity between two text doc-
uments as the minimum amount of distance that
the embedded words of one document need to
“travel” to reach the embedded words of another
document. We show that this distance metric can
be cast as an instance of the Earth Mover’s Dis-
tance, a well studied transportation problem for
which several highly efficient solvers have been
developed. Our metric has no hyperparameters
and is straight-forward to implement. Further, we
demonstrate on eight real world document classi-
fication data sets, in comparison with seven state-
of-the-art baselines, that the WMD metric leads
to unprecedented low k-nearest neighbor docu-
ment classification error rates.

1. Introduction
Accurately representing the distance between two docu-
ments has far-reaching applications in document retrieval
(Salton & Buckley, 1988), news categorization and cluster-
ing (Ontrup & Ritter, 2001; Greene & Cunningham, 2006),
song identification (Brochu & Freitas, 2002), and multi-
lingual document matching (Quadrianto et al., 2009).

The two most common ways documents are represented
is via a bag of words (BOW) or by their term frequency-
inverse document frequency (TF-IDF). However, these fea-
tures are often not suitable for document distances due to

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).
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Figure 1. An illustration of the word mover’s distance. All
non-stop words (bold) of both documents are embedded into a
word2vec space. The distance between the two documents is the
minimum cumulative distance that all words in document 1 need
to travel to exactly match document 2. (Best viewed in color.)

their frequent near-orthogonality (Schölkopf et al., 2002;
Greene & Cunningham, 2006). Another significant draw-
back of these representations are that they do not capture
the distance between individual words. Take for example
the two sentences in different documents: Obama speaks
to the media in Illinois and: The President greets the press
in Chicago. While these sentences have no words in com-
mon, they convey nearly the same information, a fact that
cannot be represented by the BOW model. In this case, the
closeness of the word pairs: (Obama, President); (speaks,
greets); (media, press); and (Illinois, Chicago) is not fac-
tored into the BOW-based distance.

There have been numerous methods that attempt to circum-
vent this problem by learning a latent low-dimensional rep-
resentation of documents. Latent Semantic Indexing (LSI)
(Deerwester et al., 1990) eigendecomposes the BOW fea-
ture space, and Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) probabilistically groups similar words into top-
ics and represents documents as distribution over these top-
ics. At the same time, there are many competing vari-
ants of BOW/TF-IDF (Salton & Buckley, 1988; Robert-
son & Walker, 1994). While these approaches produce a
more coherent document representation than BOW, they
often do not improve the empirical performance of BOW
on distance-based tasks (e.g., nearest-neighbor classifiers)
(Petterson et al., 2010; Mikolov et al., 2013c).

r and c are term-frequency vectors, Mij is the euclidean distance between
word2vec representations of xi and yj

“From Word Embeddings To Document Distances” by Kusner et al. (ICML 2015)
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Word Mover’s Distance: Results

From Word Embeddings To Document Distances

1 2 3 4 5 6 7 8
0
10
20
30
40
50
60
70

twitter recipe ohsumed classic reuters amazon

te
st

 e
rr

or
 % 43

33

44

33 32 32
29

66
63 61

49 51

44

36

8.0 9.7

62

44 41
35

6.95.06.7
2.8

33
29

14
8.16.96.3

3.5

59

42

28

14
17

12
9.37.4

34

17
22 21

8.46.44.3

21

4.6

53 53
59

54
48

45
43

51
56 54

58

36
40

31 29 27

20newsbbcsport

k-nearest neighbor error
BOW [Frakes & Baeza-Yates, 1992] 
TF-IDF [Jones, 1972]
Okapi BM25 [Robertson & Walker, 1994]

LSI [Deerwester et al., 1990]
LDA [Blei et al., 2003]
mSDA [Chen et al., 2012]
Componential Counting Grid [Perina et al., 2013]

Word Mover's Distance

Figure 3. The kNN test error results on 8 document classification data sets, compared to canonical and state-of-the-art baselines methods.
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Figure 4. The kNN test errors of various document metrics aver-
aged over all eight datasets, relative to kNN with BOW.

w, TF (w, D) is its term frequency in document D, |D| is
the number of words in the document, Davg is the average
size of a document, and k1 and b are free parameters.

LSI Latent Semantic Indexing (Deerwester et al., 1990):
uses singular value decomposition on the BOW representa-
tion to arrive at a semantic feature space.

LDA Latent Dirichlet Allocation (Blei et al., 2003): a
celebrated generative model for text documents that learns
representations for documents as distributions over word
topics. We use the Matlab Topic Modeling Toolbox
Steyvers & Griffiths (2007) and allow 100 iterations for
burn-in and run the chain for 1000 iterations afterwards.
Importantly, for each dataset we train LDA transductively,
i.e. we train on the union of the training and holdout sets.

mSDA Marginalized Stacked Denoising Autoencoder
(Chen et al., 2012): a representation learned from stacked
denoting autoencoders (SDAs), marginalized for fast train-
ing. In general, SDAs have been shown to have state-of-
the-art performance for document sentiment analysis tasks
(Glorot et al., 2011). For high-dimensional datasets (i.e.,
all except BBCSPORT, TWITTER, and RECIPE) we use ei-
ther the high-dimensional version of mSDA (Chen et al.,
2012) or limit the features to the top 20% of the words (or-
dered by occurence), whichever performs better.

CCG Componential Counting Grid (Perina et al.,

Table 2. Test error percentage and standard deviation for different
text embeddings. NIPS, AMZ, News are word2vec (w2v) models
trained on different data sets whereas HLBL and Collo were also
obtained with other embedding algorithms.

DOCUMENT k-NEAREST NEIGHBOR RESULTS
DATASET HLBL CW NIPS AMZ NEWS

(W2V) (W2V) (W2V)
BBCSPORT 4.5 8.2 9.5 4.1 5.0
TWITTER 33.3 33.7 29.3 28.1 28.3

RECIPE 47.0 51.6 52.7 47.4 45.1
OHSUMED 52.0 56.2 55.6 50.4 44.5
CLASSIC 5.3 5.5 4.0 3.8 3.0
REUTERS 4.2 4.6 7.1 9.1 3.5
AMAZON 12.3 13.3 13.9 7.8 7.2

2013): a generative model that directly generalizes the
Counting Grid (Jojic & Perina, 2011), which models doc-
uments as a mixture of word distributions, and LDA (Blei
et al., 2003). We use the grid location admixture probabil-
ity of each document as the new representation.

For each baseline we use the Euclidean distance for kNN
classification. All free hyperparameters were set with
Bayesian optimization for all algorithms (Snoek et al.,
2012). We use the open source MATLAB implementation
“bayesopt.m” from Gardner et al. (2014).3

5.2. Document classification

Document similarities are particularly useful for classifica-
tion given a supervised training dataset, via the kNN de-
cision rule (Cover & Hart, 1967). Different from other
classification techniques, kNN provides an interpretable
certificate (i.e., in the form of nearest neighbors) that al-
low practitioners the ability to verify the prediction result.
Moreover, such similarities can be used for ranking and
recommendation. To assess the performance of our met-
ric on classification, we compare the kNN results of the
WMD with each of the aforementioned document repre-
sentations/distances. For all algorithms we split the train-

3http://tinyurl.com/bayesopt

The kNN test errors of various document metrics averaged over eight
datasets, relative to kNN with BOW
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Wasserstein on Discrete Measures

If the ground cost matrix M is defined by a distance (e.g.,
Mij ≜ ∥xi − yj∥1), the optimal transport distance is called the
Wasserstein distance
It is a special case of the Wasserstein distance between two
discrete measures µ =

n∑
i=1

aiδxi and ν =
n∑

i=1
biδyi

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)p dγ(x, y)
)1/p
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Slide that should remind you what’s going on

Let r ∈ Σm and c ∈ Σn be the vectors which correspond to
the mass of each point, where Σd ≜ {x ∈ Rd

+ : x⊤1d = 1}
Each transportation plan is defined by a matrix from

U(r, c) ≜ {P ∈ Rm×n
+ : P1n = r,P⊤1m = c}

Mij is the cost of moving a unit mass from xi to yj

Optimal Transport distance:

dM(r, c) ≜ min
P∈U(r,c)

⟨P,M ⟩
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“Sinkhorn Distances: Lightspeed
Computation of Optimal Transport” by
Cuturi (NIPS 2013)



Entropy Regularization

Sinkhorn (dual) distance:

dλM(r, c) ≜ min
P∈U(r,c)

⟨P,M ⟩ − 1
λ

h(P),

where h(P) is the entropy
h(P) ≜ −

∑
ij

Pij logPij

U(r, c) ≜ {P ∈ Rm×n
+ : P1n = r,P⊤1m = c}

It can be shown that there exists α > 0, such that
dλM(r, c) = min

P∈U(r,c), KL(P||rc⊤)<α
⟨P,M ⟩
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Geometric Interpretation

*

""
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Sinkhorn-Knopp Lemma

Lemma
For λ > 0, Pλ = diag(u)Kdiag(v), where u ∈ Rm

+ and v ∈ Rn
+ are uniquely

defined up to a multiplicative factor and K ≜ e−λM is the element-wise
exponential of −λM.

Proof.

L(P,α,β) =
∑

i,j

{
PijMij +

1
λ

Pij logPij

}
+α⊤ (P1n − r)+β⊤ (P⊤1m − c

)
∂L(P,α,β)

∂Pij
= Mij +

1
λ
logPij + 1 +αi + βj = 0

logPij = (−αi − 1/2) + (−λMij) + (−βj − 1/2)

12



Sinkhorn – Knopp Algorithm

How to find a non-negative matrix P, such that

P = diag(u)Kdiag(v) :
m∑

i=1
Pij = cj and

n∑
i=j

Pij = ri?

Take arbitrary non-negative vectors u(0) and v(0) scale the
matrix P until convergence

13



Sinkhorn – Knopp Algorithm

P = diag(u)Kdiag(v) :
m∑

i=1
Pij = cj and

n∑
i=j

Pij = ri

Pij = uiKijvj∑
j

Pij = ui
∑

j
Kijuj ←→ ri ui = ri / (Kv)i∑

i
Pij = vj

∑
j

Kijui ←→ cj vj = cj /
(
K⊤u

)
j[

u(k+1) ← r /
(
Kv(k))

v(k+1) ← c /
(
K⊤u(k+1))
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“Near-linear time approximation algorithms
for optimal transport via Sinkhorn
iteration” by Altschuler et al. (NIPS 2017)



Task Formulation and Contributions

The goal is to find an approximate optimal plan P̂ ∈ U(r, c)
satisfying

⟨P̂,M ⟩ ≤ min
P∈U(r,v)

⟨P,M⟩+ ε

Two major contributions:

• The Sinkhorn-Knopp algorithm’s complexity is proven to
be O

(
n2ε−3 log(n)∥M∥3

∞
)

• Greenkhorn: a new greedy algorithm for computing
Sinkhorn distance with the same theoretical complexity

15



Sketches of the Algorithms

Sinkhorn-Knopp
(1967)

Greenkhorn
(2017)

1. Compute K← e−λM 1. Compute K← e−λM

2. Alternately rescale
rows/columns to match
r and c

2. Greedily rescale one
row/column to match r
and c
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Approximate Optimal Transport Algorithms

4

Algorithm 1 ApproxOT(C, r, c, ε)

η ← 4 logn
ε

, ε′ ← ε
8‖C‖∞

\\ Step 1: Approximately project onto
Ur,c

1: A← exp(−ηC)
2: B ← Proj(A,Ur,c, ε′)

\\ Step 2: Round to feasible point in Ur,c
3: Output P̂ ← round(B,Ur,c)

Algorithm 2 round(F,Ur,c)
1: X ← D(x) with xi = ri

ri(F )
∧ 1

2: F ′ ← XF
3: Y ← D(y) with yj =

cj
cj(F ′)

∧ 1

4: F ′′ ← F ′Y
5: errr ← r − r(F ′′), errc ← c− c(F ′′)
6: Output G← F ′′ + errrerr>c /‖errr‖1

The core of our algorithm is the com-
putation of an approximate Sinkhorn
projection of the matrix A = exp(−ηC)
(Step 1), details for which will be given
in Section 3. Since our approximate
Sinkhorn projection is not guaranteed to
lie in the feasible set, we round our ap-
proximation to ensure that it lies in Ur,c
(Step 2). Pseudocode for a simple, par-
allelizable rounding procedure is given
in Algorithm 2.

Algorithm 1 hinges on two subrou-
tines: Proj and round. We give two
algorithms for Proj: Sinkhorn and
Greenkhorn. We devote Section 3 to
their analysis, which is of independent
interest. On the other hand, round is
fairly simple. Its analysis is postponed
to Section 4.

Our main theorem about Algorithm 1 is the following accuracy and runtime
guarantee. The proof is postponed to Section 4, since it relies on the analysis of
Proj and round.

Theorem 1. Algorithm 1 returns a point P̂ ∈ Ur,c satisfying

〈P̂ , C〉 ≤ min
P∈Ur,c

〈P,C〉+ ε

in time O(n2+S), where S is the running time of the subroutine Proj(A,Ur,c, ε′).
In particular, if ‖C‖∞ ≤ L, then S can be O(n2L3(log n)ε−3), so that Algorithm 1
runs in O(n2L3(log n)ε−3) time.

Remark 1. The time complexity in the above theorem reflects only elemen-
tary arithmetic operations. In the interest of clarity, we ignore questions of bit
complexity that may arise from taking exponentials. The effect of this simplifi-
cation is marginal since it can be easily shown [KLRS08] that the maximum bit
complexity throughout the iterations of our algorithm is O(L(log n)/ε). As a re-
sult, factoring in bit complexity leads to a runtime of O(n2L4(log n)2ε−4), which
is still truly near-linear.

3. LINEAR-TIME APPROXIMATE SINKHORN PROJECTION

The core of our OT algorithm is the entropic penalty proposed by Cuturi [Cut13]:

(2) Pη := argmin
P∈Ur,c

{
〈P,C〉 − η−1H(P )

}
.

The solution to (2) can be characterized explicitly by analyzing its first-order
conditions for optimality.

Lemma 1. [Cut13] For any cost matrix C and r, c ∈ ∆n, the minimization
program (2) has a unique minimum at Pη ∈ Ur,c of the form Pη = XAY , where
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A = exp(−ηC) and X,Y ∈ IRn×n
+ are both diagonal matrices. The matrices

(X,Y ) are unique up to a constant factor.

We call the matrix Pη appearing in Lemma 1 the Sinkhorn projection of A,
denoted ΠS(A,Ur,c), after Sinkhorn, who proved uniqueness in [Sin67]. Comput-
ing ΠS(A,Ur,c) exactly is impractical, so we implement instead an approximate
version Proj(A,Ur,c, ε′), which outputs a matrix B = XAY that may not lie in
Ur,c but satisfies the condition ‖r(B)− r‖1 +‖c(B)− c‖1 ≤ ε′. We stress that this
condition is very natural from a statistical standpoint, since it requires that r(B)
and c(B) are close to the target marginals r and c in total variation distance.

3.1 The classical Sinkhorn algorithm

Given a matrix A, Sinkhorn proposed a simple iterative algorithm to approxi-
mate the Sinkhorn projection ΠS(A,Ur,c), which is now known as the Sinkhorn-
Knopp algorithm or RAS method. Despite the simplicity of this algorithm and its
good performance in practice, it has been difficult to analyze. As a result, recent
work showing that ΠS(A,Ur,c) can be approximated in near-linear time [AZLOW17,
CMTV17] has bypassed the Sinkhorn-Knopp algorithm entirely.1 In our work,
we obtain a new analysis of the simple and practical Sinkhorn-Knopp algorithm,
showing that it also approximates ΠS(A,Ur,c) in near-linear time.

Algorithm 3 Sinkhorn(A,Ur,c, ε′)
1: Initialize k ← 0
2: A(0) ← A/‖A‖1, x0 ← 0, y0 ← 0
3: while dist(A(k),Ur,c) > ε′ do
4: k ← k + 1
5: if k odd then
6: xi ← log ri

ri(A
(k−1))

for i ∈ [n]

7: xk ← xk−1 + x, yk ← yk−1

8: else
9: y ← log

cj

cj(A
(k−1))

for j ∈ [n]

10: yk ← yk−1 + y, xk ← xk−1

11: A(k) = D(exp(xk))AD(exp(yk))

12: Output B ← A(k)

Pseudocode for the Sinkhorn-Knopp
algorithm appears in Algorithm 3. In
brief, it is an alternating projection pro-
cedure which renormalizes the rows and
columns of A in turn so that they match
the desired row and column marginals r
and c. At each step, it prescribes to ei-
ther modify all the rows by multiplying
row i by ri/ri(A) for i ∈ [n], or to do
the analogous operation on the columns.
(We interpret the quantity 0/0 as 1 in
this algorithm if ever it occurs.) The
algorithm terminates when the matrix
A(k) is sufficiently close to the polytope
Ur,c.

3.2 Prior work

Before this work, the best analysis of Algorithm 3 showed that Õ((ε′)−2) iter-
ations suffice to obtain a matrix close to Ur,c in `2 distance:

Proposition 1. [KLRS08] Let A be a strictly positive matrix. Algorithm 3
with dist(A,Ur,c) = ‖r(A) − r‖2 + ‖c(A) − c‖2 outputs a matrix B satisfying
‖r(B) − r‖2 + ‖c(B) − c‖2 ≤ ε′ in O

(
ρ(ε′)−2 log(s/`)

)
iterations, where s =∑

ij Aij, ` = minij Aij, and ρ > 0 is such that ri, ci ≤ ρ for all i ∈ [n].

1Replacing the Proj step in Algorithm 1 with the matrix-scaling algorithm developed
in [CMTV17] results in a runtime that is a single factor of ε faster than what we present
in Theorem 1. The benefit of our approach is that it is extremely easy to implement, whereas
the matrix-scaling algorithm of [CMTV17] relies heavily on near-linear time Laplacian solver
subroutines, which are not implementable in practice.
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chooses the best row or column to update greedily. Additionally, Greenkhorn
does an exact line search on the coordinate in question since there is a simple
closed form for the optimum, whereas the algorithm proposed by [GCPB16] up-
dates in the direction of the average gradient. Our experiments establish that
Greenkhorn performs better in practice; more details appear in the Appendix.

We emphasize that our algorithm is an extremely natural modification of
Sinkhorn, and greedy algorithms for the scaling problem have been proposed
before, though these do not come with with explicit near-linear time guaran-
tees [PL82]. However, whereas previous analyses of Sinkhorn cannot be mod-
ified to extract any meaningful rates of convergence for greedy algorithms, our
new analysis of Sinkhorn from Section 3.3 applies to Greenkhorn with only
trivial modifications.

Algorithm 4 Greenkhorn(A,Ur,c, ε′)
1: A(0) ← A/‖A‖1, x← 0, y ← 0.
2: A← A(0)

3: while dist(A,Ur,c) > ε do
4: I ← argmaxi ρ(ri, ri(A))
5: J ← argmaxj ρ(cj , cj(A))
6: if ρ(rI , rI(A)) > ρ(cJ , cJ(A)) then
7: xI ← xI + log rI

rI (A)

8: else
9: yJ ← yJ + log cJ

cJ (A)

10: A← D(exp(x))A(0)D(exp(y))

11: Output B ← A

Pseudocode for Greenkhorn ap-
pears in Algorithm 4. We define
dist(A,Ur,c) = ‖r(A)−r‖1+‖c(A)−c‖1
and define the distance function ρ :
IR+ × IR+ → [0,+∞] by

ρ(a, b) = b− a+ a log
a

b
.

The choice of ρ is justified by its ap-
pearance in Lemma 5, below. While ρ
is not a metric, it is easy to see that ρ
is nonnegative and satisfies ρ(a, b) = 0
iff a = b.

We note that after r(A) and c(A) are computed once at the beginning of the
algorithm, Greenkhorn can easily be implemented such that each iteration runs
in only O(n) time.

Theorem 3. The algorithm Greenkhorn outputs a matrix B satisfying
‖r(B)−r‖1+‖c(B)−c‖1 ≤ ε′ in O(n(ε′)−2 log(s/`)) iterations, where s =

∑
ij Aij

and ` = minij Aij. Since each iteration takes O(n) time, such a matrix can be
found in O(n2(ε′)−2 log(s/`)) time.

The analysis requires the following lemma, which is an easy modification of
Lemma 2.

Lemma 5. Let A′ and A′′ be successive iterates of Greenkhorn, with cor-
responding scaling vectors (x′, y′) and (x′′, y′′). If A′′ was obtained from A′ by
updating row I, then

f(x′, y′)− f(x′′, y′′) = ρ(rI , rI(A
′)) ,

and if it was obtained by updating column J , then

f(x′, y′)− f(x′′, y′′) = ρ(cJ , cJ(A′)) .

We also require the following extension of Pinsker’s inequality (proof in Ap-
pendix).

dist (A,Ur,c) = ∥r(A)− r∥1 + ∥c(A)− c∥1 , ρ(a, b) = b− a + a log a
b

18
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“Smooth and Sparse Optimal Transport” by
Blondel et al. (AISTATS 2018)



Entropy is not the only Regularization

We can take any strongly convex function R and define a
regularized optimal transport as

d̂M(r, c) ≜ min
P∈U(r,c)

{⟨P,M ⟩+ γR(P)}

LTE.IE » ✓ Ей
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Smooth and Sparse Optimal Plans

Wasserstein optimal plans are often sparse, but Sinkhorn
transportation matrices are not sparse
Why? Because at least log(0) is not definedSmooth and Sparse Optimal Transport

Unregularized
Sparsity: 94%

Smoothed semi-dual (ent.)

Sparsity: 0%

Smoothed semi-dual (sq. 2-norm)

Sparsity: 90%

Semi-relaxed primal (Eucl.)

Sparsity: 91%

Figure 1: Comparison of transportation plans obtained by different formulations on the application of color
transfer. The top and right histograms represent the color distributions a ∈ 4m and b ∈ 4n of two images.
For the sake of illustration, the number of colors is reduced to m = n = 32, using k-means clustering. Small
squares indicate non-zero elements in the obtained transportation plan, denoted by T throughout this paper.
The sparsity indicated below each graph is the percentage of zero elements in T . The weight of the elements of
T indicates the extent to which colors from one image must be transferred to colors from the other image. Like
unregularized OT (first from left), but unlike entropy-regularized OT (second from left), our squared 2-norm
regularized OT (third from left) is able to produce sparse transportation plans. This is also the case of our
relaxed primal (not shown) and semi-relaxed primal (fourth from left) formulations.

dual and semi-dual. Our derivations abstract away
regularization-specific terms in an intuitive way (§3).
We show how incorporating squared 2-norm and
group-lasso regularizations within that framework
leads to sparse solutions. This is illustrated in Fig-
ure 1 for squared 2-norm regularization.

Next, we explore the opposite direction: replacing
one or both of the primal marginal constraints with
approximate smooth constraints. When using the
squared Euclidean distance to approximate the con-
straints, we show that this can be interpreted as adding
squared 2-norm regularization to the dual (§4). As
illustrated in Figure 1, that approach also produces
sparse transportation plans.

For both directions, we bound the approximation er-
ror caused by regularizing the original OT problem.
For the regularized primal, we show that the approxi-
mation error of squared 2-norm regularization can be
smaller than that of entropic regularization (§5). Fi-
nally, we showcase the proposed approaches empiri-
cally on the task of color transfer (§6).

An open-source Python implementation is available at
https://github.com/mblondel/smooth-ot.

Notation. We denote scalars, vectors and matrices
using lower-case, bold lower-case and upper-case let-
ters, e.g., t, t and T , respectively. Given a matrix T ,
we denote its elements by ti,j and its columns by tj .
We denote the set {1, . . . ,m} by [m]. We use ‖ · ‖p to
denote the p-norm. When p = 2, we simply write ‖ · ‖.
We denote the (m−1)-dimensional probability simplex

by4m := {y ∈ Rm+ : ‖y‖1 = 1} and the Euclidean pro-
jection onto it by P4m(x) := argminy∈4m ‖y − x‖2.
We denote [x]+ := max(x,0), performed element-wise.

2 Background

Convex analysis. The convex conjugate of a function
f : Rm → R ∪ {∞} is defined by

f∗(x) := sup
y∈dom f

y>x− f(y). (1)

If f is strictly convex, then the supremum in (1) is
uniquely achieved. Then, from Danskin’s theorem
(1966), it is equal to the gradient of f∗:

∇f∗(x) = argmax
y∈dom f

y>x− f(y).

The dual of a norm ‖ · ‖ is defined by ‖x‖∗ :=
sup‖y‖≤1 y>x. We say that a function is γ-smooth
w.r.t. a norm ‖ · ‖ if it is differentiable everywhere and
its gradient is γ-Lipschitz continuous w.r.t. that norm.
Strong convexity plays a crucial role in this paper due
to its well-known duality with smoothness: f is γ-
strongly convex w.r.t. a norm ‖ · ‖ if and only if f∗ is
1
γ -smooth w.r.t. ‖ · ‖∗ (Kakade et al., 2012).

Optimal transport. We focus throughout this pa-
per on OT between discrete probability distributions
a ∈ 4m and b ∈ 4n. Rather than performing a point-
wise comparison of the distributions, OT distances
compute the minimal effort, according to some ground
cost, for moving the probability mass of one distribu-
tion to the other. The modern OT formulation, due to

21



Dual and Semi-Dual Problems

Dual:
OT(r, c) = max

α,β∈P(M)
α⊤r + β⊤c,

P(M) := {α ∈ Rm,β ∈ Rn : αi + βj ≤ Mi,j}

If α is fixed, an optimal solution w.r.t. β is
βj = min

i∈{1,...,m}
Mi,j − αi, ∀j ∈ {1, . . . , n}

Semi-Dual:

OT(r, c) = max
α∈Rm

α⊤r−
n∑

j=1
cj max

i∈{1,...,m}
(αi −Mi,j)
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Smooth Relaxed Dual

Indicator:

δ(x) ≜
{

0, if x ≤ 0
∞, otherwise

= sup
y≥0

y⊤x

Smoothed version of δ:

δΩ(x) ≜ sup
y≥0

y⊤x− Ω(y)

Smoothed relaxed dual:

OTΩ(r, c) = max
α∈Rm
β∈Rn

α⊤r + β⊤c−
n∑

j=1
δΩ (α+ βj1m −Mj)
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Results

Source

Sparsity: 99%

Unregularized

Sparsity: 98%

Smoothed semi-dual (l22)

Sparsity: 99%

Semi-relaxed primal (Eucl.)

Reference

Sparsity: 0%

Smoothed semi-dual (ent.)

Sparsity: 99%

Relaxed primal (Eucl.)

Sparsity: 96%

Semi-relaxed primal (KL)
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“Computational Optimal Transport:
Complexity by Accelerated Gradient
Descent Is Better Than by Sinkhorn’s
Algorithm” by Dvurechensky et al. (ICML
2018)



Contributions

• Improved complexity for approximating the OT distance:

O
(

n2∥M∥2
∞ ln n

ε2

)
• An Adaptive Primal-Dual Accelerated Gradient Descent (APDAGD)

algorithm: a flexible framework for OT problems with different
regularizers

• Improved complexity for approximating the OT distance, by
APDAGD method

O

(
min

{
n9/4√∥C∥∞R ln n

ε
,
n2∥M∥∞R ln n

ε2

})
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“Learning Latent Permutations with
Gumbel-Sinkhorn Networks” by Mena et al.
(ICLR 2018)



Learning Permutations

④ ③

¥¥:
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Permutations as a Transportation Plan

π : {1, . . . ,m} → {1, . . . ,m}

Pπ =


eπ(1)
eπ(2)
eπ(3)
eπ(4)
eπ(5)

 =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

 Pπg =


eπ(1)
eπ(2)

...
eπ(n)




1
2
...
n

 =


π(1)
π(2)

...
π(n)



Matching operator gives mapping from unconstrained matrices to
permutations:

M(X) = argmax
P∈PN

⟨P,X⟩F,

where PN is a set of all permutation matrices
Credits: https://duvenaud.github.io/ 27



Relaxing Permutations

Birkhoff Polytope: BN =
{

A ∈ RN×N|
∑

i aij =
∑

j aij = 1
}

Sinkhorn Operator: S(Φ/τ) = argmax
P∈BN

⟨P,Φ⟩F + τh(P)

Theorem

If the entries of X are drawn independently from a distribution that is
absolutely continuous with respect to the Lebesgue measure in R. Then,
almost surely, the following convergence holds:

M(Φ) = lim
τ→0+

S(Φ/τ)
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Sinkhorn Networks

III. ДЕЙЧУ ← Sinkhornleaxatiom
Сша и

О
Matchingoperatorwewanttocompute.ae/differentiate[ umbled ima.ge but we сан t

Xi = P−1
θ,X̃i

X̃i + εi, f(θ,X, X̃) =
M∑

i=1

∥∥∥Xi − P−1
θ,X̃i

X̃i

∥∥∥2
→ min

θ
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Centroid Networks for Few-Shot Clustering
and Unsupervised Few-Shot Classification
(2019)



Sinkhorn K-means
Centroid Networks for Few-shot Clustering and Unsupervised Few-Shot Classification

mization problem, and compare it with regular K-Means.

Both of them can be formulated as a joint minimization in

the centroids cj ∈ R
d (real vectors) and the assignments

pi,j ≥ 0 (scalars) which specify how much of each point

xi is assigned to centroid cj :

• K-Means. Note that compared to the usual conven-
tion, we have normalized assignments pi,j so that they
sum up to 1.

minimize min
p,c

N∑

i=1

K∑

j=1

pi,j ||xi−cj ||
2

subject to

K∑

j=1

pi,j =
1

N
, i ∈ 1:N

pi,j ∈ {0, 1

N
}, i ∈ 1:N, j ∈ 1:K

• Sinkhorn K-Means.

minimize min
p,c

∑

i

∑

j

pi,j ||xi−cj ||
2 − γ H(p)

︸ ︷︷ ︸

entropy

subject to

K∑

j=1

pi,j =
1

N
, i ∈ 1:N

N∑

i=1

pi,j =
1

K
, j ∈ 1:K

pi,j ≥ 0 i ∈ 1:N, j ∈ 1:K

where H(p) = −
∑

i,j pi,j log pi,j is the entropy of

the assignments, and γ ≥ 0 is a parameter tuning the

entropy penalty term.

Sinkhorn vs. Regular K-means. The first difference is

that K-means only allows hard assignments pi,j ∈ {0,
1
N },

that is, each point xi is assigned to exactly one cluster

cj . On the contrary, the Sinkhorn K-means formulation

allows soft assignments pi,j ∈ [0, 1
N ], but with the addi-

tional constraint that the clusters have to be balanced, i.e.,

the same amount of points are soft-assigned to each clus-

ter
∑

i pi,j = 1
K . The second difference is the penalty

term −γH(p) which encourages solutions of high-entropy,

i.e., points will tend to be assigned more uniformly over

clusters, and clusters more uniformly over points. Adding

entropy-regularization allows us to compute pi,j very effi-

ciently using the work of Cuturi (2013), as explained in the

next paragraph. Beyond computational reasons, we will

see in the next section that the entropy-term is necessary

in order to calibrate the meta-training and meta-validation

phases of Centroid Networks. Note that removing the bal-

ancing constraint
∑

i pi,j = 1
K in the Sinkhorn K-Means

objective would yield a regularized K-means objective with

coordinate update steps identical to EM in a mixture of

Gaussians (with pi,j updated using softmax conditionals).

Algorithms. Both K-means and Sinkhorn K-means can

be solved iteratively by alternating coordinate descent on

the assignments and centroids. Minimization in the assign-

ments is an argmin in K-means, and a call to the Sinkhorn

Algorithm 1 Sinkhorn(x, c, γ) for Wasserstein-2 distance

Input: data (xi)1≤i≤n ∈ R
n×d, centroids (cj)1≤j≤k ∈

R
k×d, regularization constant γ > 0.

Output: optimal transport plan (pi,j) ∈ R
n×n.

Compute pairwise squared L2-distances, scale by γ and

exponentiate:

Ki,j ← exp(−||xi − cj ||
2
2/γ)

Initialize dual variables (vj) ∈ R
K : vj ← 1.

Initialize row (Ri) ∈ R
N and column (Cj) ∈ R

K

marginal dist. to uniform: Ri ← 1/N,Cj ← 1/K .

while not converged do

// Enforce row marginals

ui ← Ri/(

k∑

j=1

Ki,jvj), 1 ≤ i ≤ n

// Enforce column marginals

vj ← Cj/(

n∑

i=1

Ki,jvi), 1 ≤ j ≤ k

end while

Return optimal transport plan (pi,j):

pi,j ← uiKi,jvj , 1 ≤ i ≤ n, 1 ≤ j ≤ k

algorithm6 for Sinkhorn K-means (see Algorithm 1). Mini-

mization in the centroids amounts to setting them equal to

the weighted average of the points assigned to them. The

full Sinkhorn K-means procedure7 is described in Algo-

rithm 2.

5. Centroid Networks

In this section, we describe our method and explain how

it can be applied to few-shot clustering and unsupervised

few-shot classification. Both tasks require to cluster a set

of points (either the support set or query set) as part of base-

training, and only the base-validation step differs. Centroid

Networks consist of two modules: a trainable embedding

module and a fixed clustering module.

Embedding module. The embedding module is directly

inspired by Prototypical Networks (Snell et al., 2017), and

consists of a neural network hθ : X → Z which maps data

(images) x to features z = hθ(x) in the embedding space.

As in Protonets, the only trainable neural network of Cen-

troid Networks is the embedding function, which makes

6In practice we use the log-sum-exp trick in the Sinkhorn al-
gorithm to avoid numerical underflows.

7We initialize centroids around zero and add a tiny bit of Gaus-
sian noise to break symmetries. All details in code.

Centroid Networks for Few-shot Clustering and Unsupervised Few-Shot Classification

mization problem, and compare it with regular K-Means.

Both of them can be formulated as a joint minimization in

the centroids cj ∈ R
d (real vectors) and the assignments

pi,j ≥ 0 (scalars) which specify how much of each point

xi is assigned to centroid cj :

• K-Means. Note that compared to the usual conven-
tion, we have normalized assignments pi,j so that they
sum up to 1.

minimize min
p,c

N∑

i=1

K∑

j=1

pi,j ||xi−cj ||
2

subject to

K∑

j=1

pi,j =
1

N
, i ∈ 1:N

pi,j ∈ {0, 1

N
}, i ∈ 1:N, j ∈ 1:K

• Sinkhorn K-Means.

minimize min
p,c

∑

i

∑

j

pi,j ||xi−cj ||
2 − γ H(p)

︸ ︷︷ ︸

entropy

subject to

K∑

j=1

pi,j =
1

N
, i ∈ 1:N

N∑

i=1

pi,j =
1

K
, j ∈ 1:K

pi,j ≥ 0 i ∈ 1:N, j ∈ 1:K

where H(p) = −
∑

i,j pi,j log pi,j is the entropy of

the assignments, and γ ≥ 0 is a parameter tuning the

entropy penalty term.

Sinkhorn vs. Regular K-means. The first difference is

that K-means only allows hard assignments pi,j ∈ {0,
1
N },

that is, each point xi is assigned to exactly one cluster

cj . On the contrary, the Sinkhorn K-means formulation

allows soft assignments pi,j ∈ [0, 1
N ], but with the addi-

tional constraint that the clusters have to be balanced, i.e.,

the same amount of points are soft-assigned to each clus-

ter
∑

i pi,j = 1
K . The second difference is the penalty

term −γH(p) which encourages solutions of high-entropy,

i.e., points will tend to be assigned more uniformly over

clusters, and clusters more uniformly over points. Adding

entropy-regularization allows us to compute pi,j very effi-

ciently using the work of Cuturi (2013), as explained in the

next paragraph. Beyond computational reasons, we will

see in the next section that the entropy-term is necessary

in order to calibrate the meta-training and meta-validation

phases of Centroid Networks. Note that removing the bal-

ancing constraint
∑

i pi,j = 1
K in the Sinkhorn K-Means

objective would yield a regularized K-means objective with

coordinate update steps identical to EM in a mixture of

Gaussians (with pi,j updated using softmax conditionals).

Algorithms. Both K-means and Sinkhorn K-means can

be solved iteratively by alternating coordinate descent on

the assignments and centroids. Minimization in the assign-

ments is an argmin in K-means, and a call to the Sinkhorn

Algorithm 1 Sinkhorn(x, c, γ) for Wasserstein-2 distance

Input: data (xi)1≤i≤n ∈ R
n×d, centroids (cj)1≤j≤k ∈

R
k×d, regularization constant γ > 0.

Output: optimal transport plan (pi,j) ∈ R
n×n.

Compute pairwise squared L2-distances, scale by γ and

exponentiate:

Ki,j ← exp(−||xi − cj ||
2
2/γ)

Initialize dual variables (vj) ∈ R
K : vj ← 1.

Initialize row (Ri) ∈ R
N and column (Cj) ∈ R

K

marginal dist. to uniform: Ri ← 1/N,Cj ← 1/K .

while not converged do

// Enforce row marginals

ui ← Ri/(

k∑

j=1

Ki,jvj), 1 ≤ i ≤ n

// Enforce column marginals

vj ← Cj/(

n∑

i=1

Ki,jvi), 1 ≤ j ≤ k

end while

Return optimal transport plan (pi,j):

pi,j ← uiKi,jvj , 1 ≤ i ≤ n, 1 ≤ j ≤ k

algorithm6 for Sinkhorn K-means (see Algorithm 1). Mini-

mization in the centroids amounts to setting them equal to

the weighted average of the points assigned to them. The

full Sinkhorn K-means procedure7 is described in Algo-

rithm 2.

5. Centroid Networks

In this section, we describe our method and explain how

it can be applied to few-shot clustering and unsupervised

few-shot classification. Both tasks require to cluster a set

of points (either the support set or query set) as part of base-

training, and only the base-validation step differs. Centroid

Networks consist of two modules: a trainable embedding

module and a fixed clustering module.

Embedding module. The embedding module is directly

inspired by Prototypical Networks (Snell et al., 2017), and

consists of a neural network hθ : X → Z which maps data

(images) x to features z = hθ(x) in the embedding space.

As in Protonets, the only trainable neural network of Cen-

troid Networks is the embedding function, which makes

6In practice we use the log-sum-exp trick in the Sinkhorn al-
gorithm to avoid numerical underflows.

7We initialize centroids around zero and add a tiny bit of Gaus-
sian noise to break symmetries. All details in code.
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Centroid Networks

K cluster centroids
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Sinkhorn Softmax

• Softmax conditional:

pθ(us
i = j | xs

i) =
exp

{
−∥hθ(xs

i)− cj∥2
2/T
}∑K

k=1 exp
{
−∥hθ(xs

i)− ck∥2
2/T
}

• Sinkhorn conditional:

pθ (us
i = j | xs

i) =
pi,j∑K
k=1 pi,j
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Sliced Wasserstein Distance (2017, CVPR
2018, ICLR 2019)



Wasserstein Distance in 1D

The complexity of computing the Wasserstein distance:

• d > 1: O
(
n3 log n

)
• d = 1: O (n log n)

1- 2 3 4 5

1- 2 3 4 5

W2
2(X,Y) =

1
npoints

∥sort(X)− sort(Y)∥1

34



Sliced Wasserstein Distance

Sliced Wasserstein Distance can be defined in the
following ways:
• SW2

2(X,Y) =
(∫

θ∈Ω W2
2(θ

⊤X, θ⊤Y) dθ
)
,

where Ω is a unit sphere in Rd

• SW2
2(X,Y) = Eθ

∥sort(θ⊤X)−sort(θ⊤Y)∥
∥θ∥1

,
where the expectation is taken over the normal
distribution in Rd

This distance is usually computed using simple
Monte-Carlo methods
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“Orthogonal Estimation of Wasserstein
Distances” by Rawland et al. (AISTATS
2019)



Monte-Carlo is biased

We use the same projection to compute ordering and to
estimate the distance:

SW2
2(X,Y) ≈ 1

nproj · nsamples · ∥θ∥

nproj∑
i=1
∥sort(θ⊤i X)− sort(θ⊤i Y)∥1
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Projected Wasserstein Distance
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Orthogonal Wasserstein Algorithm

Rowland*, Hron*, Tang*, Choromanski, Sarlos, Weller

directions are learnt from data, to be used in the con-
text of sliced Wasserstein estimation.

Here, we consider the general approach of using or-
thogonal projection directions within sliced Wasser-
stein and projected Wasserstein distances. We show
the (perhaps surprising) results that: (i) there is a
strong connection between orthogonal coupling of pro-
jection directions and notions of stratified sampling;
(ii) contrary to the intuition of Pitié et al. (2007), using
orthogonal projection directions can actually worsen
the performance of sliced Wasserstein estimation (as
measured by estimator variance); but (iii) orthogonal
projection directions always lead to an improvement in
estimator variance for the projected Wasserstein dis-
tance in the case M = 2; we conjecture that this holds
more generally. Besides the motivation presented in
Section 3, the projected Wasserstein distances there-
fore serve an important role in our theoretical under-
standing of the impact of orthogonally coupled pro-
jection directions on estimation of the sliced Wasser-
stein distances. Details on how to perform practical
Monte Carlo sampling from UnifOrt(Sd�1;N), as well
as computationally e�cient approximate sampling al-
gorithms, are provided in the Appendix.

4.1 Orthogonal couplings

To make precise the notion of orthogonal projection
directions, we first make a preliminary definition.

Definition 4.1. Let N  d. The probability distri-
bution UnifOrt(Sd�1;N) 2 P((Sd�1)N ) is defined as
the joint distribution of N rows of a random orthog-
onal matrix drawn from Haar measure on the orthog-
onal group O(d). If N is a multiple of d, we define
the distribution UnifOrt(Sd�1;N) to be that given by
concatenating N/d independent copies of random vari-
ables drawn from UnifOrt(Sd�1; d).

A collection of random vectors (vn)Nn=1 drawn from
UnifOrt(Sd�1;N) has the property that each random
vector vn is marginally distributed as Unif(Sd�1), and
all vectors are mutually orthogonal almost surely. The
broad idea is to replace the i.i.d. projection directions
(vn)Nn=1 appearing in Algorithms 1 and 2 with a sam-
ple from UnifOrt(Sd�1;N); Algorithm 3 specifies this
adjustment precisely in the case of sliced Wasserstein
estimation, with the new sampling mechanism shown
in red. The adjustment for projected Wasserstein esti-
mation is analogous, and is given in the appendix due
to space constraints.

4.2 Analysis of orthogonal couplings

We now compare the mean squared error (MSE) of
i.i.d. and orthogonal estimation of the sliced and

Algorithm 3 Orthogonal sliced Wasserstein estima-
tion

Require: ⌘ = 1
M

PM
m=1 �xm , µ = 1

M

PM
m=1 �ym

1: Sample (vn)Nn=1 ⇠ UnifOrt(Sd�1;N)
2: for n = 1 to N do
3: Compute projected distributions:
4: (⇧vn)#⌘ = 1

M

PM
m=1 �hvn,xmi

5: (⇧vn)#µ = 1
M

PM
m=1 �hvn,ymi

6: Compute sorted lists of supports:
7: (wm)Mm=1  sort((hvn,xmi)Mm=1)
8: (zm)Mm=1  sort((hvn,ymi)Mm=1)
9: Compute one-dimensional Wasserstein distance:

10: Wp
p((⇧vn)#⌘, (⇧vn)#µ)=

1
M

PM
m=1 |wm�zm|

p

11: end for
12: return 1

N

PN
n=1 W

p
p((⇧vn)#⌘, (⇧vn)#µ)

projected Wasserstein distance between distributions
(⌘, µ) 2 P(M)(Rd) ⇥ P(M)(Rd). As the MSE of
an unbiased estimator is equal to its variance, im-
proving upon i.i.d. requires the cross-covariance in-
duced by sampled directions to be negative. This mo-
tivates us to first study a class of stratified estimators
which is proved to be statistically superior to the i.i.d.
approach. The main drawback of the stratification
scheme is its O((M !)2) computational complexity.

The importance of stratified estimators for our pur-
poses comes from the fact that their improved accu-
racy is due to the increase in average diversity of in-
duced couplings (cf. Definition 3.1), a property that
is also typical for the orthogonally coupled estimators.
Orthogonal coupling can therefore be seen as a com-
putationally tractable approximation to stratification.
As we observe in experiments, this approximation usu-
ally indeed leads to improved MSE. However, we prove
that the improvement in the case of sliced Wasserstein
estimation is not universal over all pairs of distribu-
tions (⌘, µ) 2 Pp(Rd) ⇥Pp(Rd), contrary to the in-
tuition of Pitié et al. (2007).

4.2.1 Improving MSE by stratification

We begin by formalising stratification and establishing
its dominance over i.i.d. estimation in terms of MSE.

Definition 4.2 (Stratified estimation). Let (X ,A) be
a measurable space, X a random variable with prob-
ability distribution Law(X) taking values in X , and
f : X ! R an integrable function with ✓ := E[f(X)].
Assume {Ak}

K
k=1 ✓ A is a finite disjoint partition of

X . An estimator of ✓

✓̂N =
1

N

NX

i=1

f(Xi) ,
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Figure 3: Training curves of Sliced Wasserstein
Auto-encoders with three methods to compute Sliced
Wasserstein distance: i.i.d. Monte Carlo estimate
(red), orthogonal estimate (blue) and HD matrix for
orthogonal estimate (green). Vertical axis is the log
training loss, horizontal axis is the number of itera-
tions. Left uses a learning rate of ↵ = 1.0 · 10�4 and
right uses a learning rate of ↵ = 1.0 · 10�5.

↵ = 10�4 (Figure 3, left), both estimates behave simi-
larly; when the learning rate is small ↵ = 10�5 (Figure
3, right), orthogonal estimate leads to a slightly faster
convergence than i.i.d. estimate. When using HD ma-
trices as a proxy to compute orthogonal estimates, we
always benefit from the computational benefit at train-
ing time.

5.3 Reinforcement learning

In reinforcement learning (RL), at time t an agent is in
state st, takes an action at, receives an instant reward
rt and transitions to next state st+1. The objective
is to search for a policy ⇡✓ : st 7! at parameterized
by ✓ such that the expected discounted cumulative re-
ward J(⇡✓) = E⇡✓ [

P1
t=0 �

t
rt] for some discount factor

� 2 (0, 1) is maximized. Policy gradient algorithms ap-
ply (an approximation of) the gradient update ✓new  
✓old + ↵r✓oldJ(⇡✓old) to iteratively improve the pol-
icy. Trust region policy optimization (Schulman et al.,
2015) requires that D(⇡✓old ||⇡✓new)  ✏ for some ✏ > 0
to ensure that the updates are stable, where D(·, ·) is
some discrepancy measure between two policies. Pre-
viously, Schulman et al. (2015) propose to set D(·, ·) =
KL[·||·] as the KL divergence, while Zhang et al. (2018)
set D(·, ·) = W1(·, ·) as the 1-Wasserstein distance.
As alternates to the discrepancy measure, we take
D(·, ·) to be the sliced Wasserstein distance SW1(·, ·)
or projected Wasserstein distance PW1(·, ·). For fast
optimization, instead of constructing an explicit con-
straint, we adopt a penalty formulation of the trust
region (Schulman et al., 2017; Zhang et al., 2018) and
update ✓new  ✓old+↵r✓old(J(⇡✓old)��D(✓old, ✓new))
for some penalty constant � > 0. We present all algo-
rithmic and implementation details in the Appendix.

Since projected Wasserstein corrects for the implicit
“bias” introduced by sliced Wasserstein, we expect the
trust region by projected Wasserstein lead to more sta-

Figure 4: Training curves of RL with three methods to
compute policy gradients updates on benchmark tasks
(left: Hopper, right: HalfCheetah): no trust region
(red), trust region by sliced Wasserstein (blue) and
trust region by projected Wasserstein (green). Train-
ing curves show the mean ± std performance across 5
random seeds. Vertical axis is the cumulative reward,
horizontal axis is the number of time steps.

ble training. In Figure 4, we show the training curves
on benchmark tasks HalfCheetah (right) and Hopper
(left) (Brockman et al., 2016). We compare the train-
ing curves of three schemes: no trust region (red), trust
region by sliced Wasserstein distance (blue) and trust
region by projected Wasserstein distance (green). In
most tasks with simple dynamics as Hopper, we do
not see significant di↵erence between three methods;
however, in tasks with more complex dynamics such
as HalfCheetah, we observe that trust region updates
with projected Wasserstein distance leads to slightly
more stable updates than the other two baselines,
achieving higher cumulative rewards within a fixed
number of training steps.

6 CONCLUSION

We have considered projected Wasserstein distance, a
variant of sliced Wasserstein distance, and studied or-
thogonal couplings of projection directions in estima-
tors of sliced and projected Wasserstein distances. In
doing so, we have also given an interpretation of or-
thogonal coupling as an e�cient, approximate means
of performing stratified sampling. Our empirical eval-
uations show that orthogonality can dramatically re-
duce estimator variance, and these benefits are trans-
lated over to downstream tasks such as generative
modelling in certain circumstances. Important areas
for future work include deepening our understanding of
the relationship between improvements in estimation
of Wasserstein distances themselves and improvements
in downstream tasks such as distribution learning, and
strengthening our understanding of the e↵ectiveness
of orthogonal couplings in Monte Carlo estimators of
Wasserstein distances.
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