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Recapitulation




Discrete-Discrete Optimal Transport

e Point clouds:

{z:}i2, and {yi}iy

oL
e Let r; be the mass of z; iO Q gt

and c; be the desired mass O
pd
of y; : Q &
e M is the cost of moving a %O
unit mass from x; to y; . Q O Sk
(ground cost matrix) !

o We want to transport
masses in an optimal way



Optimal Transport

Let r € 3, and ¢ € X, be the vectors which correspond to
the mass of each point, where ;= {z e R : z'1,=1}

Each transportation plan is defined by a matrix from

Ur,c)2{PcR™: Pl,=7,P'1,,=c}
M; is the cost of moving a unit mass from x; to y;
Optimal Transport distance:

dy(r,¢) £ min (P, M)
PcU(r,c)



Drawbacks: Ill-Posedness

dy(r,¢) £ min (P, M)

v a solution exists
X the solution is not unique

X the solution is “unstable”



Drawbacks: Complexity

Definition

f(n) € O(h(n)), when Ik € N: f(n) € O(h(n)log" h(n))
Optimal Transport Complexity

Best theoretical: O(n2?) [Lee & Sidford, 2014]

Best practical: O(n?) [e.g., min cost flow solver]



Example: Word Mover’s Distance

OT distance is a perfect tool to define a distance between sets, consisting
of metric space objects

document 1 ) . ‘gr.eets’ document 2
Obama Oblama ./V The
speaks e , ‘speaks’ President
to President greets
the the
media ‘Chicago’ press
in o ‘media’ in
Illinois ] o’ . o0 Chicago
“Illinois’ "press

word2vec embedding

r and c are term-frequency vectors, M;; is the euclidean distance between
word2vec representations of z; and y;

“From Word Embeddings To Document Distances” by Kusner et al. (ICML 2015)



Word Mover’s Distance: Results
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Wasserstein on Discrete Measures

If the ground cost matrix M is defined by a distance (e.g.,
M;; = ||z; — yjl|1), the optimal transport distance is called the
Wasserstein distance

It is a special case of the Wasserstein distance between two

n n
discrete measures p = Y a;04, and v =Y, bidy,
i=1 =1

ilpr) ::< it /J‘Wd(ﬂf,y)pd’y(x,y)y/p

el ()



Slide that should remind you what’s going on

Let r € X, and ¢ € X, be the vectors which correspond to
the mass of each point, where ;= {z e R : z'1,=1}

Each transportation plan is defined by a matrix from

Ur,c)2{PcR™: Pl,=7,P'1,,=c}
M; is the cost of moving a unit mass from x; to y;
Optimal Transport distance:

dy(r,¢) £ min (P, M)
PcU(r,c)



“Sinkhorn Distances: Lightspeed
Computation of Optimal Transport” by
Cuturi (NIPS 2013)




Entropy Regularization

Sinkhorn (dual) distance:
, 1
d?\/_f(ra C) = PeInUl(Ig,c) <P7 M> o Xh(P)7
where h(P) is the entropy
h(P) = _ZPijlogPij
ij
Ur,c)={PcR™: Pl,=rP'1, =c}
It can be shown that there exists a > 0, such that

d = i P,M
M(Ir? C) Pe U(r,c),HI?LI(lP||rcT)<a < ’ >

10



Geometric Interpretation

M
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Sinkhorn-Knopp Lemma

Lemma

For A > 0, P = diag(u) Kdiag(v), where u € RT and v € R are uniquely
defined up to a multiplicative factor and K = e M js the element-wise
exponential of —\M.

Proof.
E(P, a,,@) = Z {PUMZ]—F %Plleg Pij}—FO’,T (P]ln — ’I")—Fﬁ—r (PT]lm — C)
Y]
OL(P, v, B)
8Pij
log Pij = (—ai — 1/2) + (—>\Ml]) + (—,Bj - 1/2)

1
:Mij—i-xlogPij-l—l—i-ai—l—,Bj:O

O 12



Sinkhorn — Knopp Algorithm

How to find a non-negative matrix P, such that

m

P = dlag(u)Kdlag(’v) . Z Pij =G and Z Pij = TZ‘?

i=1 i=j

Take arbitrary non-negative vectors u(”) and v*) scale the
matrix P until convergence

13



Sinkhorn — Knopp Algorithm

P = diag(u) Kdiag(v) : Z P;; = c¢j and Z P;=r

i=j
Pz] uzKij’Uj

Z P;= uz Kjuj < 1 u =i [ (Kv),

Z P; = ’UJZ Kiju; <— ¢; vj=¢/ (KT’U,)].

uD) o/ (K'v(k))

(k+1) uF+1)
o) ¢ /(KT ulFtD) y



“Near-linear time approximation algorithms

for optimal transport via Sinkhorn
iteration” by Altschuler et al. (NIPS 2017)




Task Formulation and Contributions

The goal is to find an approximate optimal plan Pc U(r, c)
satisfying

13, M) < ' P, + €

B M) < o, (B M)
Two major contributions:

o The Sinkhorn-Knopp algorithm’s complexity is proven to
be O (n*e~?*log(n)| M]|3,)

o Greenkhorn: a new greedy algorithm for computing
Sinkhorn distance with the same theoretical complexity

15



Sketches of the Algorithms

Sinkhorn-Knopp
(1967)

1. Compute K + e
2. Alternately rescale

M

rows/columns to match
rand c

Greenkhorn

(2017)

1. Compute K + e
2. Greedily rescale one

M

row /column to match r

and ¢
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Approximate Optimal Transport Algorithms

Algorithm 1 ApprROXOT(C, r, ¢, )

Algorithm 2 ROUND(F,U, )

N HER &
\\ Step 1 Approximately project onto L: X < D(z) with z; = (F) A1
U.. % F « XF
1: A+ exp(—nC) 3: Y + D(y) with y; = c (F/) zan N
2: B <+ PRrROJ(A, U, €) 4: F" « F'Y
5: erry <1 —r(F"), erre < ¢ — c(F")
\\ Step 2: Round to feasible point in ur,c 6: Output G F” + errrerr;r/nerrr”l

3: Output P < ROUND(B, U, )

17



Algorithm 3 SINKHORN(A,U, ,¢’)
s /
" Initialize k < 0 Algorithm 4 GREENKHORN(A, U, ., &)
t AQ — AJ||A]l1, 2% 0, y° <0 1: AQ « A/||A|L, < 0, y < O.
: while dist(A®™ U,..) > &' do 9 A AO

1

2

3

4: k<« k+1 3: while dist(A,U,.c) > ¢ do
5: if k£ odd then
6

7

8

9

4: T «+ argmax; p(r;,7:(A))
i = log =y fori € [n] 5. J < argmax; p(cj, ¢;(A))
z* — zF g, yk — yk*1 6: if p(rr,r1(A)) > PSCJ,CJ(A)) then
else ;: lmI « xr +log o5
y + log —4—— for j € [n] ¢ooelse
ej (A=) 9: ys  ys + log —SL
10: yk - yk—l +y, US| cy(4)

10: A+ D(exp(z))AQD(exp(y))

11:  A® = D(exp(z*))AD(e k
(exp(z")) AD (exp(y")) 11: Output B + A

12: Output B + A®

dist (A, Uy) = |[r(A) = 7], + lle(4) = el p(a,h) = b—a+ alog 7

18



Empirical Convergence

distance to polytope
| GREENKHORN
—+SINKHORN

N W

dist(A,U.)

o

0 2000 4000 6000 8000
row/col updates
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“Smooth and Sparse Optimal Transport” by
Blondel et al. (AISTATS 2018)




Entropy is not the only Regularization

We can take any strongly convex function R and define a
regularized optimal transport as

A~

du(r, c) £ plum {(P,M) +~R(P)}

L) | Convex stro na’(‘ér
Convek

ho‘\ Sjtlohg
convex

20



Smooth and Sparse Optimal Plans

Wasserstein optimal plans are often sparse, but Sinkhorn

transportation matrices are not sparse

Why? Because at least log(0) is not defined

]H||||| W W ]H||||| M ]H“ ||IIIIIII|||||........
™a s og !!jﬂj =Hp of %3 oy =
Dm —
AT e Tee B
!I s ® B nD!i] e ng, ¥ o =
" " =
A ”:gmﬂu: LT = 2% u, ="l
" ] po o o H a i
&8 ] =
n® B a0 ® o =
E e D% L ° q E
go | a R @ ]
Unregularized Smoothed semi-dual (ent.) Smoothed semi-dual (sq. 2-norm) Semi-relaxed primal (Eucl.)
Sparsity: 94% Sparsity: 0% Sparsity: 90% Sparsity: 91%
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Dual and Semi-Dual Problems

Dual:

OT(r, c) = agé%}((m o'r+8'c,

P(M) = {a € Rm,,@ e R": a; + ﬁj < Mz’,j}
If o is fixed, an optimal solution w.r.t. 3 is

Bi= min M;;—o; Vje{l,...,n}

ie{1,....,m}
Semi-Dual:
oT = — (c; — M ;
(ric) = maxa'r ZC L)

22



Smooth Relaxed Dual

Indicator:

i <
&myé{(h if 2 <0 _ spyTe

o0, otherwise y>0

Smoothed version of §:

do(z) £ supy'z — Q(y)
y=>0

Smoothed relaxed dual:

aceR™
BER™

OTg(r,c) =maxa'r+3'c— Z oo (e + Bil, — M)
=1

23



Results

Source Unregularized Smoothed semi-dual (/2) Semi-relaxed primal (Eucl.)
,, —

p ?‘ i

Sparsity: 99% Sparsity: 98% Sparsity: 99%
Smoothed semi-dual (ent.)

> Y

Reference

w— Relaxed prial (EuI.)

Semi-relaxed primal (KL)
2= g

.

Sparsity: 99%
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“Computational Optimal Transport:
Complexity by Accelerated Gradient
Descent Is Better Than by Sinkhorn’s
Algorithm” by Dvurechensky et al. (ICML
2018)




Contributions

e Improved complexity for approximating the OT distance:
o (n2HMH§o In n)
€

e An Adaptive Primal-Dual Accelerated Gradient Descent (APDAGD)
algorithm: a flexible framework for OT problems with different
regularizers

e Improved complexity for approximating the OT distance, by
APDAGD method

9/4 2
o (mm{n VIClRInn n ||M||ooRlnn}>

Y

€ g2
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“Learning Latent Permutations with
Gumbel-Sinkhorn Networks” by Mena et al.
(ICLR 2018)




Learning Permutations




Permutations as a Transportation Plan

m:{Ll,...,m}—{1,...,m}
r e71'(1) T i ]_ O O 0 0 l eﬂ—(l) 1 7_(_(1)
€2 00010
@) eﬂ.(g) 2 7'('(2)
Pr=|ews |=[01000| Pg=]| " -
€4 0 00O0T1 '
@ e n m(n)
lexs ] LOO 100 m(n)

Matching operator gives mapping from unconstrained matrices to

permutations:

M(X) = arg max(P, X)p,
PePy

where Py is a set of all permutation matrices

Credits: https://duvenaud.github.io/ 27



Relaxing Permutations

Birkhoff Polytope: By = {4 € RV ¥ ;= Y05 =1}

Sinkhorn Operator: S(®/7) = arg max(P, ®)r + 7h(P)
PeBy

Theorem

If the entries of X are drawn independently from a distribution that is
absolutely continuous with respect to the Lebesgue measure in R. Then,
almost surely, the following convergence holds:

M(®) = lim S(®/7)

T—0+

28



Sinkhorn Networks

(T Labent 2epmsantsbion Py o = S(g(X,0)/7) < Sinkhorn Relaxation ©
P(;;.((X) ~X

T

Y Matchin +Oru-\=w. '
< co (3
A Yed i tiebate

\:w{: we QQh’{T

B W

scmm\:led '\maa&

M(g(X,9))

— min
7]

M
) _ ~ 112
=1
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Experimental Results

Original (O)




Centroid Networks for Few-Shot Clustering
and Unsupervised Few-Shot Classification
(2019)




Sinkhorn K-means

K-Means. Note that compared to the usual conven- Sinkhorn K-Means.
tion, we have normalized assignments p; ; so that they

sum up to 1. minimize min Z Zpi,j||xifcj||2 — v H(p)
pc = . N~
minimize mlnz prH:m ci? cd entropy
=i o Sl
1 subject to Dij = —, 1€ 1:N
subject to Zpi,j =5 i€ 1:N j=1 N
j=1 al 1 .
pig €0, %1, i€1:N, je1:K > opii= 7o jELK
i=1
pij >0 i€1:N, je1:K

where H(p) = — 3, ; pi,jlogp;,; is the entropy of
the assignments, and v > 0 is a parameter tuning the
entropy penalty term.

31



Centroid Networks

d

\

Embedding module K clustez cihjcuiJs
< Sirkhotn. et
~ he X-Z = k‘f means } ane

Sott assiat\rnem{:s ?i"\
of each toink 24

—
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Sinkhorn Softmax

e Softmax conditional:

exp {—|lho(x}) — ¢35/ T}
Sexp {—|lho(a3) — erl3/ T}

po(u; = j| =) =

e Sinkhorn conditional:

Pij

po(u; =7| %) = ==
Zk:1 Pij

33



Sliced Wasserstein Distance (2017, CVPR
2018, ICLR 2019)




Wasserstein Distance in 1D

The complexity of computing the Wasserstein distance:

e d>1: O (n’logn)
e d=1: O(nlogn)

1 2 3 Ny s
— oo 2—-0——0—0——0—o—0—>
i 2 3 4 5
2 1
W35(X,Y) = ||sort(X) — sort(Y)]1

oints
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Sliced Wasserstein Distance

Sliced Wasserstein Distance can be defined in the
following ways:
o SWA(X,Y)= (fGEQ 207X,07Y) d@)
where (2 is a unit sphere in R4
||sort(8T X)— sort(GTY)H
¢ SW%(X, Y) =Ey 167
where the expectation is taken over the normal
distribution in R?

This distance is usually computed using simple
Monte-Carlo methods

35



“Orthogonal Estimation of Wasserstein
Distances” by Rawland et al. (AISTATS
2019)




Monte-Carlo is biased

We use the same projection to compute ordering and to
estimate the distance:

1 Tproj

> " [lsort(8; X) — sort(6] V)|

=1

SW%(X, Y) ~

Tproj * Tsamples HQH

36



Projected Wasserstein Distance

et: ” Famu&a-lioh“
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Orthogonal Wasserstein Algorithm

Definition 4.1. Let N < d. The probability distri-
bution UnifOrt(S9=1; N) € 2((S¥1)N) is defined as
the joint distribution of N rows of a random orthog-
onal matrix drawn from Haar measure on the orthog-
onal group O(d). If N is a multiple of d, we define
the distribution UnifOrt(S9=1; N) to be that given by

concatenating N/d independent copies of random vari-
ables drawn from UnifOrt(S91;d).

38



Orthogonal Wasserstein Algorithm: Convergence

10 —— LLD. estimate 10 — LLD. estimate
05 —— Orthogonal estimate —— Orthogonal estimate
—— HD estimate 05 —— HD estimate

Log Loss
L

400 500 0 100 500 600

300 300
lterations Iterations

Figure 3: Training curves of Sliced Wasserstein
Auto-encoders with three methods to compute Sliced
Wasserstein distance: i.i.d. Monte Carlo estimate
(red), orthogonal estimate (blue) and HD matrix for
orthogonal estimate (green). Vertical axis is the log
training loss, horizontal axis is the number of itera-
tions. Left uses a learning rate of a = 1.0 - 10~* and
right uses a learning rate of @ = 1.0 - 1075,
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Questions?

40
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