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Motivation

Quantum annealing. Binary perceptron problem: classical and
quantum approaches.

Generalization in neural networks: biased SGD and its connection
to quantum annealing.

Quantum annealing and generative models in hardware: D-
Wave examples.
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The Water Integrator Quantum annealer
Numbers are stored as water levels (mm precision) QBits are stored as current loop orientations

Modelling irrigation channels Modelling other quantum systems

(Q) Will quantum computer ever solve a scientific problem?

(A) Yes, in 2035



ML and quantum physics

S Das Sarma et al Physics Today 72, 3, 48 (2019).

e Uncovering phases of matter
e Neural-network representation

e Quantum enhanced machine learning



Quantum-enhanced ML

J Biamonte et al Nature 549 195 (2017)

e Linear algebra-based quantum ML
e Quantum machine learning for quantum data
e Quantum optimization

e Deep quantum learning



Binary perceptron

Ee{-1,+1}" T =#1

: outputs
mputs

™M pairs: — e,

approximate the function above by 7(£) = sign (o - £)

oe{—1,+1}" is the vector weights



Binary perceptron

More formally:

alN L N
minimize FE ({o;})= Y=gl gg‘gj ), over o
p=l = \
correct outputs 7 inputs & weights o

Storage capacity:

How many patterns can (typically) be perfectly memorized?



Binary perceptron
Storage capacity: define @ = limy_,oo m/N
a=70

W Krauth, M Mezard (1987) a = 0.833
theory {

H Horner (1992)

What about evaluating o numerically?

e IV

N
. . . . . . 'LI!.
Consider minimizing E ({o;)=Y A10(-A,), A== ¢'q,
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via classical simulated annealing



Binary perceptron
H Patel (1992)

Computational complexity, learning rules and storage capacities:
a Monte Carlo study for the binary perceptron

E ({o;))= Za”@( Ay) Yo

Random walk in the space of weights o according to the weight oc e=F(@)/T

New configurations are generated by random-site single-flip dynamics

Gradual cooling: % — % + a



a(N) 0.70—2 | —

Binary perceptron

H Patel (1992)

Gradual cooling: % — % + a N =65
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Binary perceptron

H Patel (1992)

Time to reach o = 0.7 < oo, = 0.833
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Binary perceptron

W Krauth, M Mezard (1987) H Horner (1992)
a = 0.833 a =70
theory is ”enumerative” theory considers Glauber dynamics

For polynomial MC time, storage capacity vanishes



Binary perceptron

H Huang, Y Kabasima (2014)

Structure of the solution space (vanishing F(o))

Typical distance between two solutions d is bounded from below, d > d,in
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Now the structure of the problem and failure of SA are understood.

What about quantum?



Quantum annealing

E E o7 = 41
h)uo' ])[“ N z—'l..N |

10 2" possible assignments

Min. Hp is equivalent to searching for lowest eigenvalue of 2% x 2V matrix

Example: consider N = 2

(+7+) ("‘7_) (_7+) (_7_)

(+,+) JS1+J2 o 0 0
HP _ (+,—) o) J—Jo O o)

(—, +) 0 0 —J1+J2 o

( ) ) 0 o —Ji—Js



Quantum annealing
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Quantum annealing

Quantum evolution

Hermitian n X n matrix H n-component state vector W(t)

ihd, U (t) = HU

Adiabatic theorem for slow evolution: ground state remains ground state

1t
U(=T) —s T(0) H(t)_(fyt 71)

If U(—T) is GS of H(~T) W (1), /

and evolution is slow

then W(0) is (almost) GS of H(0)




Quantum annealing

More generally:

N
H=Ho+H; Ho=—) Jijofoi; HH=-T) of.

i<j i=1

At T'> J: GS of H = Hj is easy to find: let ¥(0) + GS;
[' — T'(¢) and find final W(7T') according to tho;¥(t) = H(t)¥ when I'(T') = 0

U(T) is almost the GS of H = Hy + H;



Quantum annealing

How to quantum anneal (i.e., solve ihd;V(t) = H(t)W¥)?

ihd,W(t) = H(t)¥

e

Solve an ODE Perform an actual experiment Quantum MC

In the rest of the talk:

e QA approach to binary perceptron (both ODE and QMC
approaches): the latter is extremely effective and instructive

e Experimental side: gA on D-Wave: optimization and sampling
from quantum probabilities



QA of binary perceptron

C Baldassi, R Zecchina (2018)

aN u N
E({o;})= Z ALO(—AL), A,= J;F Z ;o classical function of N bits
p=1 =1

l |
N

H=E ({e;h)-T Z 67 quantum hamiltonian (2% x 2% matrix)
j=1
0.4 -

<— N = 21: real-time QA works well

relatively very small problem size

energy density E/IN

large instances can not be modelled
on a classical computer in this way [should
be implemented physically]

transverse field I



Quantum Monte Carlo

How do we probe efficency of QA for large instances?

Instead of solving ihd; ¥ (t) = H(t)¥, use Quantum MC
Quantum system with Hamiltonian H is described by p = e_ﬁ /T

Sampling from quantum distribution p: QMC

({5}~ z
tr ((o5,.) = 32 (o)) - Y o M

a=1 j=1

of ==xl,a=12..,yand j=1,2,...,. N,y =

Y= % log coth ( yp) K= %ylog (% sinh (23—;))



Quantum Monte Carlo

Number of replicas y ~ inverse temperature

At finite y the QMC is essentially a mix of QA and SA

vVig(s)

4 D |

At y — oo, the pure QA is realized

(for some problems, finite y is optimal)



Quantum Monte Carlo

Y Yy N
He ({07}, )= é > ({or}) -3 22D ooy - N;ff )

a=1 j=1

of ==xl,a=12..,yand j=1,2,...,. N,y =

General idea:

We want to try QA (annealing according to Schroedinger equation)
Impossible to implement exactly on classical computer
Possible to implement approximately via QMC

QMC is equivalent to classical sampling from (*)



Quantum Monte Carlo on Binary

classical energy density E/N
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Quantum Monte Carlo on Binary
Perceptron
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time to solution at o = 0.3 level: classical vs quantum (replicated) MC



Why is QA more effective?

d_ (o)~O(N

© o b
: -
0 / o, o

Some (small fraction) of dots are actually the clusters of O(1) spin flip con-
nected solutions. Quantum part of the energy reduces effective enery of such
delocalized clusters and help to find them effectively.

=

E({67)-T



Why is QA more effective?
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Simulated quantum annealing (QMC) vs Simulated annealing (MC)

For SA: the reference configuration is state of the system; for SC)A the mode

of replicas: sign (o;)

Note a marked qualitative difference in the type of landscape that is typically

explored by the two algorithms!



Optimization in DL problems

The binary perceptron is by itself very different from typical ML problem
What can we learn from it?

B Neyshabur et al (2017) Exploring generalization in Deep Learning

e DL are over-parametrized (Nparam > Ndata): multiple global
minima, all minimize the training error (it may even vanish)
but many of them do not generalize well. Finding global
minima is not that relevant (early stopping)

e Usually trained by SGD: large batch size - trained networks
generalize worse than small batch size (implicit regularization
by optimization algorithm)

e "Wide"minima generalize better than "sharp'"ones



SGD ~ simulated annealing

SGD: just a trick to overcome computational bottlenecks?

BSL Smith et al (2018) Don't decay the learning rate, increase the batch size

e When one decays the learning rate, one simultaneously decays
the scale of random fluctuations in the SGD dynamics. Decaying
the learning rate is simulated annealing

e Increasing the batch size and decaying the learning rate are
quantitatively equivalent
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- Decaying learning rate
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Sharp vs Flat minima

H Li et al (2018) Visualizing the loss landscape of neural nets
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Figure 3: The 1D and 2D visualization of solutions obtained using SGD with different weight decay
and batch size. The title of each subfigure contains the weight decay, batch size, and test error.



Entropy-SGD: biasing gradient descent

P Chauhari, A Choromanskya, S Soatto, Y LeCunn et al (2017)

Optimization exploiting local geometric properties of the objective function

CNN on MNIST
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Almost-flat regions of the energy landscape are robust to data perturbations,
noise in the activations, as well as perturbations of the parameters, all of which
are widely-used techniques to achieve good generalization. This suggests that
wide valleys should result in better generalization and, indeed, standard opti-
mization algorithms in deep learning seem to discover exactly that — without

being explicitly tailored to do so.

small-LeNet: Eigenspectrum of the Hessian at local minimum
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Entropy-SGD: biasing gradient descent

2.0 : _ Y e 2 g
F(x.y) = log /ﬁ exp (— ()~ L = Y|3) av'

— Original landscape
—— Negative local entropy : ¢ = 0.001

L5 Let x be weights of NN, &, - samples from

dataset and f - loss function

---- Negative local entropy : 7 = 0.00005

1.0 S I N
x" =argmin — Z fx: &)
x N3

[

* . : r A
||| XEntropy-SGD = argmin —F(x,y; E)
| X

0.5

Xnon-rob

0.0

—0.5




Entropy-SGD: biasing gradient descent
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Intermediate summary

e Quantum annealing is a very efficient optimizer for discrete
single-layer network: binary perceptron

e Efficiency of QA is due to its ability to target rare but dense
clusters of solutions, unaccessible for SA

e Observations above are for discrete-weight networks (single-
or multi-layered). From the other side, for usual continuous-
weight NN the minimizer biased towards wide minima improves
generalization. It would be interesting to find quantum analog
of this algorithm.



Optimization of neural networks via
finite-value quantum fluctuations

Ohzeki M et al (2018)

() = V(&) + ——p?

2p(t }

- == Replicate the weights: w — wir=12,.. M

b= %EKP{—_ﬁﬁ(t}) :

Mp(t)

Plwy, Wy, =y Wy) = f[exp —%V{Wk} 25 Wi — wi Il B — oo with 8/M = finite
1.0
s Single-layer NN; MNIST dataset
%0-6 classical (usual) Adam
%0'4_ quantum (replicas + interaction) Adam

o
N

[no anealing (p) is finite in a final state]

e
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QA in hardware (D-Wave)

black box
q1 42 CJ3 Q4 ' e
e
—)
réSISfﬁf‘”" a
{1.7')Eintra ] jEInter

Ht)= —A(t) Z o + B(t)Hp



QA: good and bad

(Good: For quantum tunneling to be effective in the hardware, there is no
need to maintain (almost) perfect coherence, as required for universal quantum

computer.

n =]

A.B (GHz)
L e I L =

00 02 04 06 08 10

Bad: Adiabaticity: we want the system to always remain in the lowest
eigenvector of H(t). If H(t) is too large, the system leaves this manifold. QA

for some problems is spoiled by presence of tiny energy gaps.



Quantum Annealing on D-Wave

In practice: after each run, measure the system. The outcome is random,
with certain probability to end up in the GS, ps(tf). R(ts) depends on the time
ty - the slower the annealing, the higher is probability to end up in the lowest

energy state.

T Albash, D Lidar (2018)
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Quantum sampling

H(t)=—A(t)Y o +B(t)Hp MH Amin (2015)

Stop at s, <1

Under certain conditions for s, and for A(s,) < B(sx),

fglal state is close to equilibrium classical one:

—fE(z)
e 2
P(z) = E(z) == ) Jizzj =) hiz

1.0 Z (i.])e€ ieV

In this formulation, quantum dynamics during the times s < s,
serves to thermalize the classical degrees of freedom z;

(the temperature 371! is in general unknown and should be inferred)



Quantum sampling on D-Wave

M Benedetti, J Realpe-Gomez, R Biswas,A Perdomo-Ortiz (2017).

I. Learning algorithm

Data: OptDigits dataset reduced to 7x6 binary images (current HW limit)

i

goal: learn parameters of generative model for the data, pp

<11
P
Frars p = e P2 with == Jizizi— Y hiz
\:; I (i,j)EE eV
k!
minimize  S(ppllp) = TrppInpp — Trpplnp  over h, J
(k) _ ) I 08 5(k) (1) 5 (k) 1)
‘F I } l) ) o ;U (kl) ° ,"'jd]“l - {Zf Zf }.ﬂp_ {Zf Zf }.r;‘
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Oh." Bonl " \ '

most computation-intensive part: evaluation of the gradients



Quantum sampling on D-Wave

M Benedetti, J Realpe-Gomez, R Biswas,A Perdomo-Ortiz (2017).

I. Learning algorithm

evaluation of the V
Model samples Dataset

Control
parameters
Quantum

J‘.. h [:> Annealer
T

4

updating parameters
the role of QA: evaluation of thermal averages (?( .H)P

averaging over thermal distribution, parametrized by J, h, QA replaces MCMC
routine: hopefully thermalizes better than MCMC



Quantum sampling on D-Wave

e PoaH(7")
p = = parametrized by device parameters
II. Sampling from p
N
H(t)=—A(t)Y o +B(t)Hp Stop at s, < 1
=1

azure z; variables

gt




Quantum sampling on D-Wave

I1I. Image restoration

Corrupted Glarnpbl:;m:nwn Reconstructed
Image qubits Image

ij * .!:II.".
Sample
Learned control Quantum [:>
parameters Annealer
J . hn [:;

(strongly bias variables z; for which the values are known, sample the rest
according to p)
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Summary

Binary Perceptron problem: playground for showing suppremacy
of QA over SA

Success of QA in Binary Perceptron relies on its ability to
target wide minima (relevant for generalization capabilities)

The approach generalizes from Binary Perceptron (single
layer, discrete weights) to multi-layer discrete and continous
weights. On standard datasets leads to excellent generalization
without explicit regularization

Efficient hardware evaluation of Gibbs averages for training
generative models

Fair sampling from multivariate N’ ~ 2°9 probability distributions
iIs expected to be the first proof of quantum supremacy



