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Klein et al. (2015), Riegler et al. (2015)

• Klein, B., Wolf, L., & Afek, Y. (2015). A dynamic convolutional layer for 
short range weather prediction. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition (pp. 4840-4848).

• Riegler, G., Schulter, S., Ruther, M., and Bischof, H. (2015). 
Conditioned regression models for non-blind single image super-
resolution. In Proceedings of the IEEE International Conference on 
Computer Vision, pages 522–530

• Weights vary based on the input, they are determined by a second 
NN



Klein et al 
(2015). 

• A new deep network layer called the ”Dynamic Convolutional Layer”, 
which generalizes the conventional convolutional layer

• Similar to the convolutional layer, the dynamic convolutional layer 
takes the feature maps from the previous layer and convolves them 
with filter

• The novelty lies in that the filters of the dynamic convolutional layer 
are not the param- eters of the layer, rather they are obtained as the 
output of a subnetwork of arbitrary depth that maps the input to a set 
of filters



Klein et al. (2015)

• The architecture of the network.

• Network B is a sub-network which computes the filters (H1 and V1) used by the dynamic 
convolution layers. 

• SH1 is the result of applying a softmax function on H1 and SV1 is the result of applying a 
softmax function on V1. 

• DC1 is a dynamic convolution layer that takes the last image in the sequence and convolves 
it with SV1. DC2 is a dynamic convolution layer that is takes DC1 and convolves it with SH1.



Klein et al. (2015)
• Application: task of short range weather prediction.

• It is shown that by using the new layer, they gain improvement in performance 
compared to the other baselines, including the conventional CNN.

• Comparison of methods

• The patch based dynamic CNN provides the lowest error rates.

• The next best performing method is the patch based conventional CNN

• The following best performing method is the whole image dynamic CNN.



Jia et al. (2016)

• Employ hypernetworks across multiple layers

• For video frame synthesis and stereo prediction

• Jia, X., De Brabandere, B., Tuytelaars, T., & Gool, L. V. (2016). Dynamic filter 
networks. In Advances in Neural Information Processing Systems (pp. 667-
675).



Jia et al. (2016)
• Poposed dynamic filter module consists of two parts: a filter-generating network and a 

dynamic filtering layer

• The filter-generating network dynamically generates sample-specific filter parameters 
conditioned on the network’s input

• The dynamic filtering layer then applies those sample-specific filters to the input

• The filters can be convolutional, but other options are possible.

• In particular, they propose a special kind of dynamic filtering layer, dynamic local filtering 
layer, which is not only sample-specific but also position-specific

• The work differs from Klein et al (2015), Riegler et al (2015) in that it is more general: 
dynamic filter networks are not limited to translation-invariant convolutions, but also allow 
position-specific filtering using a dynamic locally connected layer



Jia et al. (2015)

• Left: Dynamic convolution: the filter-generating network produces a 
single filter that is applied convolutionally on IB

• Right: Dynamic local filtering: each location is filtered with a location-
specific dynamically generated filte



Jia et al (2016)

• Learning steerable filters

• A simple use case of a dynamic filter network 
which uses a dynamic convolutional layer with 
two different types of inputs

• The task is to filter an input image with a 
steerable filter of a given orientation θ. The 
task of the filter-generating network here is to 
transform an angle into a filter, which is then 
applied to the input image to generate the final 
output.



Jia et al (2016)
• Video prediction

• Shows that we can integrate the dynamic filter 
module with a dynamic local filtering layer in a 
recurrent network to predict a sequence of frames

• Given a sequence of frames, the task is to predict 
the sequence of future frames that directly follow 
the input frames.

• The convolutional encoder-decoder as the filter-
generating network.

• A softmax layer is applied to each generated filter 
such that each filter is encouraged to have only a 
few non-zero elements



Jia et al (2016)

• Stereo prediction
• Shows its use case when there is only one kind of input

• Predicting the right view given the left view of two horizontal-disparity 
cameras

• This task is a variant of video prediction, where the goal is to predict a new 
view in space rather than in time, and from a single image rather than 
multiple ones



Ha et al. (2016)

• RNNs, in which the weights are determined by another RNN

• The weight generating RNN receives both previous hidden state and the
next token as its input

• Two networks are disjointed, their input vary over time

• Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv preprint 
arXiv:1609.09106



Krueger et al. (2017)

• Bayesian formulation, i.e. variational inference that involves a 
parameter generating network and a primary network

• Krueger, D., Huang, C.-W., Islam, R., Turner, R., Lacoste, A., and 
Courville, A. (2017). Bayesian hypernetworks. arXiv preprint 
arXiv:1710.04759.



Bertinetto et al. (2016)

• Hypernetworks for few-shot learning tasks

• Weight generating network is used to adapt to the current task and
the ability to share knowledge different tasks

• Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., and Vedaldi, A. 
(2016). Learning feed-forward one-shot learners. In Advances in 
Neural Information Processing Systems, pages 523–531



Bertinetto et al. (2016)



Bertinetto et al. (2016)



Brock et al. (2018), Zhang et al. (2019)

• The ability of hypernetworks to relpace backpropagation-based
training by prediction of weights was exploited

• For performing architecture search



(Battash et al, 2019) Adaptive and Iteratively 
Improving Recurrent Lateral Connections



(Battash et al, 2019) Adaptive and Iteratively
Improving Recurrent Lateral Connections
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Tensor contraction + Tensor regression layer

• J. Kossaifi, A. Khanna, Z. Lipton, T. Furlanello, and A. Anandkumar
Tensor contraction layers for parsimonious deep nets, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2017, pp. 26–32.

• J. Kossaifi, Z. C. Lipton, A. Khanna, T. Furlanello, and A. Anandkumar, 
Tensor contraction & regression networks, arXiv preprint
arXiv:1707.08308, (2017)

• A. Kolbeinsson, J. Kossaifi, Y. Panagakis, A. Bulat, A. Anandkumar, I. 
Tzoulaki, and P. Matthews, Robust deep networks with randomized
tensor regression layers, arXiv, (2019)



Tensor contraction + Tensor regression layer

• Fully connected layer

• Tensor contraction + TRL



Tensor contraction + Tensor regression layer



Tensor contraction + Tensor regression layer



Robust NN with randomized TRL



T-Net: Parametrizing Fully Convolutional Nets with a Single
High-Order Tensor

• Kossaifi, J., Bulat, A., Tzimiropoulos, G., & Pantic, M. (2019). T-Net: 
Parametrizing Fully Convolutional Nets with a Single High-Order
Tensor. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 7822-7831).



T-Net: Parametrizing Fully Convolutional Nets 
with a Single High-Order Tensor
• Convolutional neural network (CNNs) is fully parameterized with a 

single high-order, low-rank tensor

• The modes of such tensor represent each of the architecture design
parameters of the network (e.g. number of conv blocks, depth, 
number of statcks, imput features, etc.)

• The model is end-to-end trainable (low-rank structure acts as implicit
regularization)



T-Net: Parametrizing Fully Convolutional Nets 
with a Single High-Order Tensor
• Proposed approach allows for learning correlations between the

different tensor dimensions and hence to fully capture the structure
of the network.

• Considered application:
• human-pose estimation (single pose datasets, MPII; accuracy in terms of 

PCKh)

• Facial part segmentation (accuracy using the mean accuracy and mIOU 
metrics)

• Achives higher accuracy, especially for high compression rate



T-Net: 
Parametrizing Fully 
Convolutional Nets 
with a Single High-
Order Tensor

• Each block in the fully convolutional network is a basic-
block module (blue insert), containing b_depth (by 
default 2) convolutional layers with 3 × 3 kernels 
followed by BatchNorm and ReLU.

• For all experiments, stack of 4 sub-networks is used, with 
3 pathways each: downsampling/encoder (red blocks), 
upsampling/decoder (dark blue) and skip connection 
(cyan). Yellow dots are element-wise sums.



T-Net: Parametrizing Fully Convolutional Nets with a Single 
High-Order Tensor

• all weights of the network are parametrized 
by a single 8th–order tensor W of shape 
I0×I1×···×I7, the modes of which correspond 
to the

• number of HGs (I0 = #hg),

• the depth of each HG (I1 = hg_depth),

• the three signal pathways (I2 =hg_subnet),

• the number of convolutional layers per 
block (I3 = b_depth),

• the number of input features (I4 = fin),

• the number of output features (I5 = fout),

• the height (I6 = h) and width (I7 = w) of each 
of convolutional kernels.



T-Net: Parametrizing Fully Convolutional Nets 
with a Single High-Order Tensor
• T-Net

• MPS T-Net



T-Net: Parametrizing Fully Convolutional Nets 
with a Single High-Order Tensor



T-Net: Parametrizing Fully Convolutional Nets 
with a Single High-Order Tensor



XnorNet

• Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016, October). 
Xnor-net: Imagenet classification using binary convolutional neural
networks. In European Conference on Computer Vision (pp. 525-542). 
Springer, Cham.



XnorNet

• Binary weights

• Binary weights and binary activations



Matrix and tensor decompositions for training
binary neural networks
• Bulat, A., Kossaifi, J., Tzimiropoulos, G., & Pantic, M. (2019). Matrix

and tensor decompositions for training binary neural networks. arXiv
preprint arXiv:1904.07852.



Matrix and tensor decompositions for training 
binary neural networks
• The paper is on improving the training of binary neural networks in which 

both activations and weights are binary.

• The weight tensor of each layer is parametrized using matrix or tensor 
decomposition.

• The binarization process is then per-formed using this latent 
parametrization, via a quantization function (e.g. sign function) applied to 
the reconstructed weights

• Note: While the reconstruction is binarized, the computation in the latent 
factorized space is done in the real domain.

• Applications: human-pose estimation (MPII), large-scale image 
classification (ImageNet)



Matrix and tensor decompositions for training 
binary neural networks
• A common limitation in prior work is that each filter Wi of shape C×w×h (a slice of W)

of a given convolutional layer is binarized independently as follows:

• Bi = sign(Wi)

• A key idea in the proposed work is to model the filters jointly by reparametrizing them 
in a shared subspace using a matrix or tensor decomposition, and then binarizing the 
weights:

• W = UV, Bi = sign(Wi)

• This allows us to introduce an inter-dependency between the to-be-binarized 
weights through the shared factor U either at a layer level or even more globally 
at a network level. 

• Decomposition factors (i.e U,V) are kept real during training. This allows to 
introduce additional redundancy which facilitates learning.

• During inference, the method uses only the reconstructed weights, which have 
been binarized using the sign function (the decomposition factors are neither used 
nor stored)



Matrix and tensor decompositions for training 
binary neural networks
• Explored decompositions: SVD and Tucker

• Ways two apply decompositions: layer-wise and holistically

• Layer-wise: a weigth tensor for each layer is modeled separetely (i.e. 
different decompositions for each layer)
• SVD

• Tucker

• Holistically: whole network is tensorized with one tensor
• They propose to group together identically shaped weights inside the network in a 

higher-order tensor in order to exploit the inter relation between them holistically
• For example, they use three 5-th order tensors for ResNet-18, the individual weights 

of a given layer k can be obtained from W = W'(l, :, :, :, :), where



Matrix and tensor decompositions for training 
binary neural networks
• Pose estimation (MPII)

• Large-scale image classification (ImageNet)



Matrix and tensor decompositions for training 
binary neural networks
• One of the key ingredients of the recent success of binarized neural 

network was the introduction of the α weight scaling factor, computed 
analytically as the average of absolute weight values

• This estimation generally performs well, but it attempts to minimize 
the difference between the real weights and the binary ones W ≈ α 
sign(W) and does not explicitly decrease the overall network loss

• This work proposes to learn the scaling factor by minimizing its value 
with respect to the networks cost function, learning it discriminatively via 
back-propagation.
• a more spread out distribution that can take both positive and negative values

• has significantly higher magnitude, thus leading to a faster and more stable training.



Matrix and tensor decompositions for training 
binary neural networks
Comments and further directions

• Can these techique be improved by learning binary decompositions 
directly through back-prop?

• Can intoduction of smothing improve smth?

• Is there any sence to consider other decompositions?

• How to handle grouped-wise convolutions?



XnorNet++

• A. Bulat and G. Tzimiropoulos, Xnor-net++: Improved binary neural
networks, arXiv preprint arXiv:1909.13863, (2019).



XnorNet++



Incremental multi-domain learning with
network latent tensor factorization
• A. Bulat, J. Kossaifi, G. Tzimiropoulos, and M. Pantic, Incremental

multi-domain learning with network latent tensor factorization, arXiv
preprint arXiv:1904.06345, (2019).



Incremental multi-domain learning with
network latent tensor factorization


