
Faster R-CNN
code approach

Evgeny Ponomarev



Object detection



Speed vs accuracy trade-off. A higher mAP and a lower GPU Time is optimal. COCO 🐔 dataset



Architecture
It all starts with an image, from which we want to obtain:

● a list of bounding boxes.
● a label assigned to each bounding box.
● a probability for each label and bounding box.





1

3

2

3.5



Whole model forward







Backbone

Input: 
image batch
typ: [1, 3, 1066, 800]

Output: 
feature map 
typ: [1, 1024, 67, 50]







Region Proposal Network

Input:

image;

targets - list(bbox)

bbox ~ (c, x, y, h, w)

Output:

predicted bboxes

losses



Region Proposal Network forward

Input:

image;

targets - list(bbox)

bbox ~ (c, x, y, h, w)

Output:

predicted bboxes

losses



Get set of fixed-size boxes on image that 
corresponded to each point on feature 
map

Region Proposal Network. Anchors



Regressor computes tilts for given anchors

Objectness predict probability of not-background

Region Proposal Network. Regressor and objectness



● Start from bbox(MAX)
 with highest IoU (intersection 
over union) score with its 
ground-truth bbox (predicted)

● exclude all bboxes with 
iou(THIS,MAX)⩾THRESH

● Select the next prediction bbox with 
the highest IoU from the left bboxes 
until no bbox left.

● return top of the sorted bbox list:

list(Bbox)[:2000]

Non-maximum suppression



Region Proposal Network loss





Project bounding box into feature space 
and then allign or pool to fixed size

Regions of Interest(RoI) Pool/Allign



feature map

Regions of Interest(RoI) Pool/Allign

BBox projection from Image to feature map
here 2x2, actually typ. 7x7 or 14x14

Points for bilinear interpolation



● Finalise tilts for bounding box for 
each class

● Predict class probability

Same loss type as for RPN, but multiclass

(Regions of Interest) Head



TADA!


