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Motivation and Problem Statement

Forecasting time series and time-dependent data is a common problem
in many applications
Example: solving ODE ẋ = F (x) by using solution samples

Solvers cannot be used if F (x) is not known explicitly
Neural networks could predict the solution for a timestep ∆t

Objective
Exploring the ability of residual networks to predict the evolution of ODE
systems from their samples
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Current approaches

M. Mai et al. Reconstruction of ordinary differential equations from
time series data (2016):

Reconstruction of RHS from solution samples;
Good results for 2D problems;
Considerable divergence for 3D Lorenz system already after T = 1.

J. Pathak et al. Using machine learning to replicate chaotic
attractors and calculate Lyapunov exponents from data (2017):

Based on reservoir modeling;
Divergence after T = 7 for Lorenz system.
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Proposed approach: residual network (ResNet)

ResNet blocks learn the residual of the input and the desired output

Source: He K. et al. Deep residual learning for image recognition (2016)

For a network of M ResNet blocks and input x0, the output is

xM = x0 +
M−1∑
i=0

Fi (xi )

Artem Chashchin Skoltech 6 / 25



Proposed approach: residual network (ResNet)

Deep Network
xi+1 = Fi (xi )

Consecutive multiplications in
forward and backward
propagations
Vanishing/exploding gradients
in very deep architectures

ResNet
xi+1 = xi + Fi (xi )

Summations replace some
multiplications
Vanishing/exploding gradients
problem is reduced
Resembles Euler method for
ODE systems
Successful application in image
classification
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Dynamical systems

Van der Pol oscillator

ẋ(t) = y

ẏ(t) = µ(1− x2)y − x

Rössler system

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)

Lorenz system

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz
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Approach

Initial conditions: 10000 points sampled from N(0, I )

Solver finds solution of the ODE system in [0,T ]

Two experiments with ResNets:
1 Training on samples from [0,T/2] and predicting for [T/2,T ]
2 Training on samples from [0,T/4] and predicting for [T/4,T ]

Four ResNet architectures with different parameters
(number of blocks, number of layers in a block, layer size)

Artem Chashchin Skoltech 9 / 25



Results

Relative prediction errors for the short interval [T/2,T ]

Van der Pol Lorenz Rössler
εavg εT εavg εT εavg εT

RN1 0.61 1.09 1.60e17 6.80e18 0.39 0.62
RN2 0.83 1.07 0.38 0.57 0.97 1.69
RN3 0.70 1.27 0.52 1.19 0.31 0.53
RN4 1.01 1.49 0.42 0.57 0.32 0.59

Satisfactory results for most of the experiments
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Results

Relative prediction errors for the long interval [T/4,T ].

Van der Pol Lorenz Rössler
εavg εT εavg εT εavg εT

RN1 0.42 0.73 nan nan 0.42 0.65
RN2 7.84 90.51 0.34 0.58 0.65 0.72
RN3 0.63 1.16 0.41 0.59 1.33 1.82
RN4 1.47 1.66 nan nan 0.49 0.88

Artem Chashchin Skoltech 11 / 25



Results: Van der Pol oscillator

Predictions at the moment T = 25

ResNet, from T/2 ResNet, from T/4 Solver
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Results: Rössler attractor

Predictions at the moment T = 125

ResNet, from T/2 ResNet, from T/4 Solver

Artem Chashchin Skoltech 13 / 25



Results: Lorenz attractor

Predictions at the moment T = 25

ResNet, from T/2 ResNet, from T/4 Solver
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Conclusion

Results:
Successful application of residual networks to the problem of
reconstructing ODE system solution
Prediction interval is longer than for previous approaches
The main dynamics of the systems is preserved

Future plans:
Application of residual networks to more complex applied problems
Experiments with ResNet modifications (e.g. RevNet - reversible
residual network)
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Motivation and Problem Statement

Previously, we learned the evolution of systems in time; now we try to
learn the evoluion in space
Neural networks could adaptively generate the grid and learn the
solution

Objective
Constructing a neural network model for a finite element representation of
PDE solution based on its samples
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Related articles

He J. et al. ReLU deep neural networks and linear finite elements
(2018):

Theoretical results on approximating continuous piecewise linear
functions with deep ReLU networks
Connection between FEM basis functions and ReLU functions

Yarotsky D. Error bounds for approximations with deep ReLU
networks (2017):

Proposed NN architecture with skip connections to approximate
squaring and multiplication operations

Fokina D., Oseledets I. Growing axons: greedy learning of neural
networks with application to function approximation (2019):

Proposed an algorithm for efficient training of such networks
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FEM approximation as a neural network

Source: He J. et al. ReLU deep neural networks and linear finite elements (2018)

u(x) ≈
N∑
i=1

νiφi (x)

φi (x) = 1
hi
ReLU(x − xi−1)− ( 1

hi−1
+ 1

hi
)ReLU(x − xi ) + 1

hi
ReLU(x − xi+1),

where hi = xi+1 − xi
FEM approximation = linear combination of φi (x) =

linear combination of ReLUs = two-layer neural network
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Architecture

Bias→ ReLU→ FC
Bias = a layer of biases t1, t2, . . . , tN

fixed uniform
trainable (uniform / Chebyshev / random init)

FC = a fully-connected layer without bias

Output

û(x ; t,w) =
N∑
i=1

wiReLU(x − ti )

With appropriate constraints on weights and biases we could learn
the FEM approximation of the function!

Artem Chashchin Skoltech 20 / 25



Experiments

u(x) = x(1− x), x ∈ [0, 1]

Log relative error Log MSE on test set
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Plans

Adding constraints to keep the grid from getting out of bounds
Adding variational dropout to learn sparse approximation of a function
Considering problems of higher dimension
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