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Canenical Pelyacic Decomposition (CPD)




Tucker decomposition
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Algorithms flor CPD

« | Alternating Least Squares (ALS) algorithm

« Gauss-Newton and Levenberg-Marquardt algorithms

» Tensor power iteration algorithm
» Fast damped Gauss-Newton (dGN)

« Simultaneous matrix diagonalization




Alternating least-squares algorithm (ALS)

Fixing all factor matrices and updating one by solving the following least squares
problem
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CPD with prier HOSVD compression

Computational complexity
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CPD witth prior HOSVD compression

CPD of the core tensor

R. Bro, Multi-way Analysis in the Food Industry -

Models, Algorithms, and Applications, Ph.D. thesis, /1 /
University of Amsterdam, Holland, 1998.
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Computing the CPD factor matrices of the original
tensor
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Rancdemized algorithms for HOSVD compression
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Randemized algorithms for HOSVD compression
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Randemized algorithms for HOSVD compression

Sparse random matrices
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where matrix components are 1.i.d.




Randemizecd algorithms for HOSVD compression
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Diiiferent types of dafta

Dlstrlbuted data
Memory RulmmPd Disk 2

Streaming data




Randemized algorithms for HOSVD compression
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Rancdemized algorithms for HOSVD compression

Count sketch 322 2 2

Example:
* Matrix size 9 X 15
* Sketchsizes =3
Pictures from:
S. Wang. A practical guide to
randomized matrix computations with
MATLAB implementations.
arXiv:1505.07570, 2015. <+ Hashing

) Hash each column with a value uniformly sampled from [s] = {1, 2, 3}.
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sum sum

(b) Flip the sign of each column with probability 50%, and then sum up columns with the same
hash value.




Randomizec algorithms for HOSVD compression
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Sampling columns—
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Uniform sampling (with or without replacement)

Length-squared distribution

Leverage scores distribution
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Sampling




Randomizec algorithms for HOSVD compression

J-th column leverage score
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j=1
Leverage score distribution for p; = I—j, J =1,2,...,1_[Im
column selection R men

Maximum of the leverage scores is called coherence of a matrix




Rancemizee algorithms for HOSVD compression

the following papers.

Fast algorithms for the computations of the leverage scores are proposed in

Journal of Machine Learning Research 13 (2012) 3441-3472 Submitted 7/12; Published 1212
Fast Approximation of Matrix Coherence and Statistical Leverage
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On Fast Leverage Score Sampling and Optimal
Learning
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Abstract

Leverage score sampling provides an appealing way to perform approximate com-
putations for large matrices. Indeed. it allows to derive faithful approximations
with a complexity adapted to the problem at hand. Yet, performing leverage scores
sampling is a challenge in its own right requiring further approximations. In this
paper, we study the problem of leverage score sampling for positive definite ma-
trices defined by a kernel. Our contribution is twofold. First we provide a novel
algorithm for leverage score sampling and second, we exploit the proposed method
in statistical learning by deriving a novel solver for kernel ridge regression. Our
main technical contribution is showing that the proposed algorithms are currently
the most efficient and accurate for these problems.




Randemized algorithms for HOSVD compression
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Rancdemized block sampling algorithm

Randomized block sampling uses the locality property to compute the CPD of a
given tensor.

affected variables
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Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven,
May 2018.



Rancleomizee block sampling algorithnm

Take sample Initialization Update

. Compute step

Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven,
May 2018.

N. Vervliet, O. Debals, L. Sorber, M. V. Barel, L. D. Lathauwer, Tensorlab 3.0.



Rancdomizec block sampling algorithmm

A sampling CPD is also proposing in the following paper
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A-H Phan, A Cichocki, PARAFAC algorithms for large-scale problems, Neurocomputing, 2011.



Alternating rancdomized least-squares algorithms
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Alternating rancdomized least-squares algorithms
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Alternating rancdomizecd least-squares algorithns
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The row selection does not need computing Z™ explicitly.
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Alternating rancomized least-seuares algorithms

The nonuniform sampling is used in the following paper.
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SPALS: Fast Alternating Least Squares via Implicit
Leverage Scores Sampling

Dehua Cheng Richard Peng
University of Southern California Georgia Institute of Technology
dehua. chengQusc.edu rpeng@cc.gatech.edu

Ioakeim Perros Yan Liu
Georgia Institute of Technology University of Southern California
perros@gatech.edu yanliu.csQusc.edu
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0 For both Khatri-Rao and Kroncker product of matrices o



Alternating rancomized least-seuares algorithms
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Alternating rancomized least-sguares algorithnms

Matlab codes are included in the tensor toolbox (Matlab) and Tensorly (Python)

B. W. Bader, T. G. Kolda, Matlab tensor toolbox version 2.6
(2015).

J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, The
Journal of Machine Learning Research 20 (1) (2019) 925-930.




Reancdomized algorithms for paraiac2
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Parafac2 model

Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining
and data fusion: Models, applications, and scalable algorithms, ACM Trans. on Intelligent

Systems and Technology, vol. 8, no. 2, 16:1-16:44, 2016.



Randomizec algorithms for parafac

ALGORITHM 8: ALS Algorithm for PARAFAC2

Input: Multiset {X;} for k=1 : K and rank R.
Output: PARAFAC2 Decomposition of {X;}: {U;}. H. 8, V.
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17

Initialize:

K
V <« R principal eigenvectors of ZX’?XJQ D
k=1

H<«1

. fork=1---Kdo A variety of randomized

8C,:,k) « Lfork=1...K. algorithms can be used.

end for
while convergence criterion is not met do
fork=1---Kdo
[Py, X1, Qil < truncated SVD of HS;VTX! at rank R e—
Uk < QkPZ
end for
fork=1---Kdo
Compute Y(:.:. k) = U,{Xk
end for R
Run a single iteration of CP ALS (Algorithm 1) on Y and compute factors H, V, S.
fork=1---Kdo _
8(:,:, k) < Diag(S(k, :))
end for
end while

Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining and data fusion:
Models, applications, and scalable algorithms, ACM Trans. on Intelligent Systems and Technology, vol. 8,
no. 2, 16:1-16:44, 2016.



Simulations

A® = randn (500, R), A® =randn (500, R),

A®) = randn (500, R). n=0.01
X = [AAPDAC] KX+ ”{ﬁ) Y
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Simulations

CPU Time (Second)
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Tensor Rank

Algorithm R=5| R=10 | R=15
CP-ALS 0.9900 0.9900 0.9900
CPRAND-PREMIX | 0.9897 0.9898 0.9898
CPRAND 0.9893 0.9895 0.9896
RBS 0.9881 0.9897 0.9898




Simuletions

Coil-100 dataset

S. Nene, S. Nayar, and H. Murase, Columbia Object Image Library (COIL-100), Tech. Report

CUCS-006-96, Columbia University, 1996.
A Fe %
n .

100 different object classes 72 different angles

The size of the data: 128x128x 3x 7200




Simulations

For the CP-rank R =20 the following results were achieved

Cpu Time (Second) Fit

CP-ALS 220 0.686
CPRAND-PREMIX 77.46 0.684




Simuletions

Video compression

Video link: https://www.youtube.com/watch?v=1geWugmiGt4

The size of this tensors :360 x 480 x 3x 2200

We consider only one and 29 second of that video which is a tensor of size
360 x 480 x 3x 300



https://www.youtube.com/watch?v=1qeWugmiGt4

Simulations

Frame number: 20
Frame number: 1

/ Original video \ Compressed video by CP rank

Frame number: 60 Frame number: 100 R =100

Here again the CP-PREMIX was 2 times faster than the CP-ALS.
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