# Randomized Algorithms for Canonical Polyadic Decomposition 

Salman Ahmadi-Asl

December 4, 2019
$>$ Canonical polyadic decomposition (CPD)
$>$ Randomized algorithms for CPD $\left\{\begin{array}{l}\text { Randomized CPD with prior reduction in Tucker format } \\ \text { Randomized block sampling algorithm } \\ \text { Randomized ALS algorithm }\end{array}\right.$
> Randomized Parafac2
$>$ Simulations

## Canonical Polyadic Decomposition (CPD)



## Tucker decomposition



## Aleorithms for CPD

- Alternating Least Squares (ALS) algorithm
- Gauss-Newton and Levenberg-Marquardt algorithms
- Tensor power iteration algorithm
- Fast damped Gauss-Newton (dGN)
- Simultaneous matrix diagonalization


## Alternating least-squares algorthm (ALS)

Fixed all factor matrices and update one by solving the following least squats problem

$$
\begin{gathered}
\underset{\mathrm{A}^{(n)}}{\operatorname{Min}}\left\|\mathrm{Z}^{(n)} \mathrm{A}^{(n) T}-\mathrm{X}_{(n)}^{T}\right\|_{F}, n=1,2, \ldots, N \\
Z^{(n)}=\mathrm{A}^{(N)} \square \cdots \square \mathrm{A}^{(n+1)} \square \mathrm{A}^{(n-1)} \cdots \square \mathrm{A}^{(1)} \\
\text { Explicit solution } \longrightarrow \mathrm{A}^{(n)}=\mathrm{X}_{(n)} \mathrm{Z}^{(n)} \mathrm{W}^{(n) \dagger} \\
\mathrm{W}^{(n)}=\mathrm{A}^{(1) T} \mathrm{~A}^{(1)} * \ldots * \mathrm{~A}^{(n-1) T} \mathrm{~A}^{(n-1)} * \mathrm{~A}^{(n+1) T} \mathrm{~A}^{(n+1)} * \cdots * \mathrm{~A}^{(N) T} \mathrm{~A}^{(N)}
\end{gathered}
$$

## CPD with prior Twcker compression



## CPD with prior MOSVD compression

3-th order tensors

N-th order tensors

$$
\begin{aligned}
& o\left(3 R \prod_{i=1}^{3} I_{i}\right) \quad o\left(3 R^{4}\right) \\
& o\left(N R \prod_{i=1}^{N} I_{i}\right) \quad{ }^{2}\left(N R^{N+1}\right)
\end{aligned}
$$

This approach is applicable when tensor is not of very high order and also the tensor rank is less than the original tensor sizes.

Compression step can be performed by randomized HOSVD algorithms

## Rendomized algorfthms for Mosvi compression



## Randomized algorithms for MOSVD compression



## Randomized algorithms for MOSVD compression

Sparse random matrices

$$
\Phi=\left\{\begin{array}{ll}
-1 & \text { with probability } \frac{1}{6} \\
0 & \text { with probability } \frac{2}{3} \\
+1 & \text { with probability } \frac{1}{6}
\end{array} \quad \Phi= \begin{cases}-1 & \text { with probability } \frac{1}{2 \sqrt{D}} \\
0 & \text { with probability } 1-\frac{1}{\sqrt{D}} \\
+1 & \text { with probability } \frac{1}{2 \sqrt{D}}\end{cases}\right.
$$

where matrix components are i.i.d.

These random matrices are reminiscent the quantization procedure in learning DNNs.

## Randomized algorithms for MOSVD compression



Different types of date


## Randomized algorithms for MOSVD compression



## Rendomized aleorthms for HOSVD compression

## Count sketch

## Pictures from:

S. Wang. A practical guide to randomized matrix computations with MATLAB implementations. arXiv:1505.07570, 2015.
$\begin{array}{lllllllllllllll}2 & 3 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 2 & 2 & 2 & 2\end{array}$


Example:

- Matrix size $9 \times 15$
- Sketch size $s=3$

Hashing
(a) Hash each column with a value uniformly sampled from $[s]=\{1,2,3\}$.

(b) Flip the sign of each column with probability $50 \%$, and then sum up columns with the same hash value.

## Randomized algorithms for MOSVD compression



## Randomized algorithms for MOSVD compression

$$
\begin{array}{ll}
\mathrm{X}_{(n)} \in \square^{I_{n} \times \prod_{n=n}^{I_{m}}} & l_{j}=\left\|\mathrm{V}_{R}(j,:)\right\|_{2}^{2}, \quad j=1,2, \ldots, \prod_{m \neq n} I_{m}
\end{array} \sum_{j=1}^{\prod_{n+m}^{I_{m}}} l_{j}=R
$$

Leverage score distribution for column selection

$$
p_{j}=\frac{l_{j}}{R}, \quad j=1,2, \ldots, \prod_{m \neq n} I_{m}
$$

Maximum of leverage score is called coherence of a matrix

## Rendomized algorfthms for Hosvi compression

## Fast computation of leverage scores are proposed in the following papers.

Journal of Machine Learning Research 13 (2012) 3441-3472
Submitted 7/12; Published $12 / 1$

Fast Approximation of Matrix Coherence and Statistical Leverage

Petros Drineas
Malik Magdon-Ismail
Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12180
Michael W. Mahoney
Department of Mathematics
Stanford University
Stanford, CA 94305
David P. Woodruff
BM Almaden Research Center
650 Harry Road
San Jose, CA 95120

DRINEP@CS.RPI.EDU MAGDON@CS.RPI.EDU

MMAHONEY@CS.STANFORD.EDU

Editor: Mehryar Mohri

On Fast Leverage Score Sampling and Optimal Learning

Alessandro Rudi*
INRIA - Sierra team, INRIA - Sierra team
ENS, Paris Genoa, Italy

Luigi Carratino University of Genoa, Genoa, Italy

Lorenzo Rosasco University of Genoa, LCSL - IIT \& MIT

## Abstract

Leverage score sampling provides an appealing way to perform approximate computations for large matrices. Indeed, it allows to derive faithful approximations with a complexity adapted to the problem at hand. Yet, performing leverage scores with a complexity adapted to the problem at hand. Yet, performing leverage scores
sampling is a challenge in its own right requiring further approximations. In this sampling is a challenge in its own right requiring further approximations. In this paper, we study the problem of leverage score sampling for positive definite ma-
trices defined by a kernel. Our contribution is twofold. First we provide a novel trices defined by a kernel. Our contribution is twofold. First we provide a novel
algorithm for leverage score sampling and second, we exploit the proposed method algorithm for leverage score sampling and second, we exploit the proposed method
in statistical learning by deriving a novel solver for kernel ridge regression. Our main technical contribution is showing that the proposed algorithms are currently the most efficient and accurate for these problems.

## Randomized algorithms for MOSVD compression



Randomized rank revealing or equivalently randomized fixed-precision algorithms are applicable when an estimation of matrix rank is unknown and it is approximated adaptively by the underlying algorithms.

## Randomized block sampling algorithm

Randomized block sampling uses the locality property to compute CPD of a given matrix.


Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven, May 2018.

## Randomized block sampling algorithm



Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven, May 2018.

## Rendomized block sempling algorithm

## Matlab codes are accessible in tensorlab toolbox

N. Vervliet, O. Debals, L. Sorber, M. V. Barel, L. D. Lathauwer, Tensorlab 3.0.


- PARAFAC for sub-tensors
- Parallel computing
- Factor reconstruction
- Fast learning rules
- Fast claming rule
- Parallel computing


Pictures from

## Alternating randomized least-squares algorithms

$$
\begin{gathered}
\operatorname{Min}_{\mathrm{A}}\left\|\mathrm{Z}^{(n)} \mathrm{A}^{(n) T}-\mathrm{X}_{(n)}^{T}\right\|_{F}, n=1,2, \ldots, N \\
Z^{(n)}=\mathrm{A}^{(N)} \square \cdots \square \mathrm{A}^{(n+1)} \square \mathrm{A}^{(n-1)} \cdots \square \mathrm{A}^{(1)}
\end{gathered}
$$



## Alternating randomized least-squares algorithms



## Alternating pandomized least-squares algorithms



The column selection does not need to compute $Z^{(n)}$ explicitly.

$$
\begin{gathered}
\mathrm{Z}^{(n)}(j,:)=\mathrm{A}^{(1)}\left(i_{1},:\right) * \cdots * \mathrm{~A}^{(n-1)}\left(i_{n-1}::\right) * \mathrm{~A}^{(n+1)}\left(i_{n+1}::\right) * \cdots * \mathrm{~A}^{(N)}\left(i_{N},:\right) \\
j=1+\sum_{k=1, k n n}^{N}\left(i_{k}-1\right) J_{k}, \quad J_{k}=\prod_{n=1, n * * n}^{N-1} I_{m}
\end{gathered}
$$

## Alitenating rendomized least-squares algorithms



For both Khatri-Rao and Kroncker product of matrices

## Alternating randonized least-squares algorithms



## Alternating randonized least-squares algorithms

Matlab codes are included in tensor toolbox (Matlab)
B. W. Bader, T. G. Kolda, Matlab tensor toolbox version 2.6 (2015).

Matlab codes are included in Tensorly (Python)
J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, The Journal of Machine Learning Research 20 (1) (2019) 925-930.

## Randomized algorithms for parafecz

Parafac2 model


Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Trans. on Intelligent Systems and Technology, vol. 8, no. 2, 16:1-16:44, 2016.

## Rendomized algorithms for parafec2

```
ALGORITHM 8: ALS Algorithm for PARAFAC2
Input: Multiset \(\left\{\mathbf{X}_{k}\right\}\) for \(k=1: K\) and \(\operatorname{rank} R\).
Output: PARAFAC2 Decomposition of \(\left\{\mathbf{X}_{k}\right\}:\left\{\mathbf{U}_{k}\right\}, \mathbf{H}, \mathcal{S}, \mathbf{V}\).
    1: Initialize:
    \(\mathbf{V} \leftarrow R\) principal eigenvectors of \(\sum_{k=1}^{K} \mathbf{X}_{k}^{T} \mathbf{X}_{k}\)
    \(\mathbf{H} \leftarrow \mathbf{I}\)
    for \(k=1 \cdots K\) do
        \(\mathcal{S}(:,:, k) \leftarrow \mathbf{I}\), for \(k=1 \cdots K\).
    end for
Variety of Randomized
algorithms can be used.
    while convergence criterion is not met do
        for \(k=1 \cdots K\) do
            \(\left[\mathbf{P}_{k}, \mathbf{\Sigma}_{k}, \mathbf{Q}_{k}\right] \leftarrow\) truncated SVD of \(\mathbf{H} \mathbf{S}_{k} \mathbf{V}^{T} \mathbf{X}_{k}^{T}\) at rank \(R\)
            \(\mathbf{U}_{k} \leftarrow \mathbf{Q}_{k} \mathbf{P}_{k}^{T}\)
        end for
        for \(k=1 \cdots K\) do
            Compute \(\mathbf{y}(:,:, k)=\mathbf{U}_{k}^{T} \mathbf{X}_{k}\)
        end for
        Run a single iteration of CP ALS (Algorithm 1) on \(y\) and compute factors \(\mathbf{H}, \mathbf{V}, \hat{\mathbf{S}}\).
        for \(k=1 \cdots K\) do
            \(\mathcal{S}(:,:, k) \leftarrow \operatorname{Diag}(\hat{\mathbf{S}}(k,:))\)
        end for
    end while
```

Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Trans. on Intelligent Systems and Technology, vol. 8, no. 2, 16:1-16:44, 2016.

## Simulations

$$
\begin{gathered}
\mathbf{A}^{(1)}=\operatorname{randn}(500, R), \quad \mathbf{A}^{(2)}=\operatorname{randn}(500, R), \\
\mathbf{A}^{(3)}=\operatorname{randn}(500, R) . \\
\underline{\mathbf{X}}=\left[\left[\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}\right]\right] \quad \eta=0.01 \\
\underline{\widehat{\mathbf{X}}}=\underline{\mathbf{X}}+\eta\left(\frac{\|\underline{\mathbf{X}}\|}{\|\mathbf{Y}\|}\right) \underline{\mathbf{Y}},
\end{gathered}
$$

[0.7, .8]
where $\underline{\mathbf{Y}}$ is a 4-th order tensor with i.i.d Gaussian components.

$$
f=1-\frac{\|\underline{\widehat{\mathbf{X}}}-\underline{\tilde{\mathbf{X}}}\|}{\|\underline{\widehat{\mathbf{X}}}\|}
$$

## Simulations



| Algorithm | $R=5$ | $R=10$ | $R=15$ |
| :---: | :---: | :---: | :---: |
| CP-ALS | 0.9900 | 0.9900 | 0.9900 |
| CPRAND-PREMIX | 0.9897 | 0.9898 | 0.9898 |
| CPRAND | 0.9893 | 0.9895 | 0.9896 |
| RBS | 0.9881 | 0.9897 | 0.9898 |

## Simulations

## Coil-100 dataset

S. Nene, S. Nayar, and H. Murase, Columbia Object Image Library (COIL-100), Tech. Report CUCS-006-96, Columbia University, 1996.


100 different object classes
72 different angles

$$
128 \times 128 \times 3 \times 7200
$$

## Simulations

For CP-rank $R=20$ the following results were achieved

|  | Cpu Time (Second) | Fit |
| :---: | :---: | :---: |
| CP-ALS | 220 | 0.686 |
| CPRAND-PREMIX | 77.46 | 0.684 |

## Simulations

Video compression


Video link: https://www.youtube.com/watch?v=1qeWugmiGt4

Time duration: $1^{\prime \prime}: 29^{\prime \prime \prime}$
size : $360 \times 480 \times 3 \times 2200$
$360 \times 480 \times 3 \times 300$

## Simulations

Frame number: 20

Frame number: 1


Frame number: 60


Frame number: 100


Compressed video by CP rank

$$
R=100
$$

Here again CP-PREMIX was approximately 2 times faster than CP-ALS.

## Thanks for your attention!

