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➢ Canonical polyadic decomposition (CPD)

➢ Randomized algorithms for CPD 

➢ Randomized Parafac2

➢ Simulations

Randomized CPD with prior reduction in Tucker format

Randomized block sampling algorithm

Randomized ALS algorithm
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• Alternating Least Squares (ALS) algorithm

• Gauss-Newton and Levenberg-Marquardt algorithms

• Tensor power iteration algorithm

• Fast damped Gauss-Newton (dGN)

• Simultaneous matrix diagonalization
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Fixed all factor matrices and update one by solving the following least squats 
problem
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R. Bro, Multi-way Analysis in the Food Industry - Models, Algorithms, and 

Applications, Ph.D. thesis, University of Amsterdam, Holland, 1998.
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3-th order tensors

N-th order tensors

Compression step can be performed by randomized HOSVD algorithms 

This approach is applicable when tensor is not of very high order and also the tensor 

rank is less than the original tensor sizes.
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better accuracy
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Variety of random matrices
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Sparse random matrices
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These random matrices are reminiscent the quantization procedure in learning 

DNNs.

where matrix components are i.i.d.
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Distributed data

Disk 1

RAM

Disk 3Disk 2Data Memory

Streaming data
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Algorithms presented in this talk are well-suite 

for first and second ones.

Also they can not handle constrained CPD. !!
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Count sketch

Hashing

Pictures from: 
S. Wang. A practical guide to 

randomized matrix computations with 

MATLAB implementations. 

arXiv:1505.07570, 2015.
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i-th row leverage score

j-th column leverage score

Leverage score distribution for 

column selection

Maximum of leverage score is called coherence of a matrix
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Fast computation of leverage scores are proposed in the following papers.
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Relative error

Additive error

Randomized rank revealing or equivalently randomized fixed-precision 

algorithms are applicable when an estimation of matrix rank is unknown 

and it is approximated adaptively by the underlying algorithms.
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Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven, 

May 2018.

Randomized block sampling uses the locality property to compute CPD of a 

given matrix.
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Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven, 

May 2018.
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Matlab codes are accessible in tensorlab toolbox 

N. Vervliet, O. Debals, L. Sorber, M. V. Barel, L. D. Lathauwer, Tensorlab 3.0.
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Sampling 

Uniform sampling 

Nonuniform sampling
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Sampling 

Uniform sampling 

Nonuniform sampling (Leverage scores)

Coherence of matrix should be as

small as possible
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For both Khatri-Rao and Kroncker product of matrices
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C. Battaglino, G. Ballard, T. G. Kolda, A practical 

randomized cp tensor decomposition, SIAM 

Journal on Matrix Analysis and Applications

39 (2) (2018) 876–901.
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Matlab codes are included in tensor toolbox (Matlab) 

B. W. Bader, T. G. Kolda, Matlab tensor toolbox version 2.6 

(2015).

Matlab codes are included in Tensorly (Python) 

J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, The 

Journal of Machine Learning Research 20 (1) (2019) 925–930.
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Parafac2 model

Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining 

and data fusion: Models, applications, and scalable algorithms, ACM Trans. on Intelligent 

Systems and Technology, vol. 8, no. 2, 16:1–16:44, 2016.

29



Variety of Randomized

algorithms can be used.

Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining and data fusion: 

Models, applications, and scalable algorithms, ACM Trans. on Intelligent Systems and Technology, vol. 8, 

no. 2, 16:1–16:44, 2016.
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Collinearity
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Coil-100 dataset

S. Nene, S. Nayar, and H. Murase, Columbia Object Image Library 

(COIL-100), Tech. Report CUCS-006-96, Columbia University, 1996.

128 128 3 7200  

100 different object classes 72 different angles
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20R =
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For CP-rank the following results were achieved 



Time duration : 1 : 29

size :360 480 3 2200

 

  

Video link:  https://www.youtube.com/watch?v=1qeWugmiGt4

360 480 3 300  

Video compression
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https://www.youtube.com/watch?v=1qeWugmiGt4


Original video Compressed video by CP rank 

100R =

Frame number: 1
Frame number: 20

Frame number: 60 Frame number: 100

Here again CP-PREMIX was approximately 2 times faster than CP-ALS.
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