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Caneonical Polyadic Decompeosition (CPD)
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Algorithms for CPD

* | Alternating Least Squares (ALS) algorithm

» Gauss-Newton and Levenberg-Marquardt algorithms

» Tensor power iteration algorithm

» Fast damped Gauss-Newton (dGN)

« Simultaneous matrix diagonalization




Alternating least-seuares algorithm (ALS)

Fixed all factor matrices and update one by solving the following least squats
problem
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CPD witth prier Tucker compression

Applications, Ph.D. thesis, University of Amsterdam, Holland, 1998. R3
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CPD wiith prier HOSVD compression
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Rancdomizee algorithms for HOSVD compression
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Rancdemized algorithms for HOSVD compression
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Rancdemized algorithms for HOSVD compression

Sparse random matrices

-

r ) - 1
: . —1 with probability —
—1 with probability 5 2./D
. o2 - ili 1
_ el ® =40 with probability 1—
® =<0 with probability 3 D
i I | . . 1
1 with probability = +1 with probability —
L+ P y 6 \ P ¢ 24D
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Rancdemizec algorithmms for HOSVD compressieon
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Diifferent types of cafa
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Rancdemized algerithms for HOSVD compression

Sketch
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Randemized algerithms for HOSVD compression

3 2 2 2 2

Count sketch Example:

* Matrix size 9 X 15

* Sketchsizes =3
Pictures from:
S. Wang. A practical guide to
randomized matrix computations with
MATLAB implementations. .
arXiv:1505.07570, 2015. ¢ Hashing

) Hash each column with a value uniformly sampled from [s] = {1,2, 3}.

1 1 1 1 1 2 2 2 2 2 2 3
+#1 +1 -1 +1 -1 -1 +1 -1 -1 +1 -1 -1
I. ]
' T ' T Y
sum sum
(b) Flip the sign of each column with probability 50%, and then sum up columns with the same
hash value.
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Rancdomizee algorithms for HOSVD compression

©

|2|3 Y

Sampling columns—
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Uniform sampling (with or without replacement)

Length-squared distribution

Leverage scores distribution

—

Sampling




Rancdomizee algorithms for HOSVD compression

J-th column leverage score
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- «— = L)L, 1=12,...,1, =R
< (1)), JZ;,
Leverage score distr_ibution for p, = I—j, j=12,..., H I,
column selection R m#n

Maximum of leverage score is called coherence of a matrix
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Rancomized algorithms for HOSVD compression

Fast computation of leverage scores are proposed in the following papers.

Journal of Machine Learning Research 13 (2012) 3441-3472 Submitted 7/12: Published 12/12
On Fast Leverage Score Sampling and Optimal
Learning
Fast Approximation of Matrix Coherence and Statistical Leverage
3:;'1:); ?llam(igls;-lsmail Mizﬂ::ggi:i::it AlessandAro Rudi*  Daniele Calandriello* L_uigi_Carratino Lpren_zo Rosasco
b - & C o Science e INRIA - Sierra team, LCSL - IIT & MIT, University of Genoa.  University of Genoa,
epartment of Computer Science ENS, Paris Genoa, Ttaly Genoa, Ttaly LCSL - IIT & MIT
Rensselaer Polytechnic Institute
Troy, NY 12180
Michael W. Mahoney MMAHONEY @CS.STANFORD.EDU
Department of Mathematics Abstract
Stanford University
Stanford, CA 94305 Leverage score sampling provides an appealing way to perform approximate com-
putations for large matrices. Indeed, it allows to derive faithful approximations
David P. Woodruff DPWOODRU @ US.IBM.COM with a complexity adapted to the problem at hand. Yet, performing leverage scores
IBM Almaden Research Center sampling is a challenge in its own right requiring further approximations. In this
650 Harry Road paper, we study the problem of leverage score sampling for positive definite ma-
San Jose, CA 95120 trices defined by a kernel. Our contribution is twofold. First we provide a novel
algorithm for leverage score sampling and second, we exploit the proposed method
in statistical learning by deriving a novel solver for kernel ridge regression. Our
Editor: Mchryar Mohri main technical contribution is showing that the proposed algorithms are currently
- the most efficient and accurate for these problems.
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Rancdemized algorithms for HOSVD compression
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Rancdomizee block sampling algorithnm

Randomized block sampling uses the locality property to compute CPD of a
given matrix.

sampled entry affected variables
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Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven,
May 2018.
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Rancomized block sampling algorithm

Take sample Initialization

. Compute step

Picture from: N. Vervliet, Compressed sensing approaches to large-scale tensor decompositions, PhD thesis, KU Leuven,
May 2018.
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Rancdomizee block sampling algorithnm

Matlab codes are accessible in tensorlab toolbox

N. Vervliet, O. Debals, L. Sorber, M. V. Barel, L. D. Lathauwer, Tensorlab 3.0.

Neurommputing 74 (2011) 1970-1984

Contents lists ilable at Sci Direct

Neurocomputing

Uy % 1) :
* Factor reconstruction

st learning rules
arallel computing

* PARAFAC for sub-tensors
* Parallel computing

journal homepage: www.elsevier.com/locate/neucom s =
a u E
/ 74
Uxlyy)

LSS

(Iix J)

Anh Huy Phan®*, Andrzej Cichocki® 7 3
e Wz ) - g

(hy %N

PARAFAC algorithms for large-scale problems

B Systerns Research Institute Polish Academy of Science, Poland S Uxlx,y)
no, 4 E-(K.K0) @ gy x D

. e 3 gy x D) el

ARTICLE INFO ABSTRACT " b £7 Uxh)
i (Ix JxJ)

Available online 19 February 2011 Parallel factor analysis (PARAFAC) is a tensor { multiway array) factorization method which allows to Lol e ) .‘ @ hxJ)

Keywords: find hidden factors (component matrices) from a multidimensional data. Most of the existing h o - @ - i

Canonical polyadic decomposition (CP) algorithms for the PARAFAC, especially the alternating least squares [ALS) algorithm need to compute v "

Tensor factor ization Khatri-Rao products of @ll factors and multiplication of large matrices, and due to this require high g ) et = *PARAFAC for full tensor

PARAFAC computational cost and large memory and are mot suitahle for very large-scale-problems. Hence, b T L UKy > e * Khatri-Rao products of

Large-scale dataset PARAFAC for large-scale data tensors is still a challenging problem. In this paper, we propose a new Thaws o EEIT tall factors

Multiway classification approach based on a modified ALS algorithm which computes Hadamard products, instead Khatri-Rao e

Farallel com puting products, and employs relatively small matrices. The new algorithms are able to process extremely

Alternating least squares
Hierarchical ALS

large-scale tensors with billions of entries. Extensive experiments confirm the validity and high
performance of the developed algorithm in comparison with other well-known algorithms.

© 2011 Elsevier BV. All rights reserved P | CtU reS fro m
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Alternating rencomized least-sguares algorithms
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Alternating rancomized least-sguares algorithns

Min

AN

Uniform sampling
Sampling<

Nonuniform sampling
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Alternating rancdomized least-sguares algorithms

A(")T

The column selection does not need to compute 2™ explicitly.

Z"(§,)= AU (i) AT ()R AT () e AN (i)

N N-1

i=1+ > (i,.-13. J.= [ 1.

k=1,k=n m=1,m=n
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Alternating reancomizecd least-sguares algorithmms

/ Coherence of matrix should be as
small as possible

Uniform sampling

Sampling
Nonuniform sampling (Leverage scores)

SPALS: Fast Alternating Least Squares via Implicit
Leverage Scores Sampling

& 0

Dehua Cheng Richard Peng

University of Southern California Georgia Institute of Technology
dehua. chengusc.edu rpeng@cc.gatech.edu
Toakeim Perros Yan Liu
Georgia Institute of Technology University of Southern California
perros@gatech.edu yanliu.cs@usc.edu
0 For both Khatri-Rao and Kroncker product of matrices o )
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Alternating rancdomized least-sguares algorithms
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Mixing rows by random
projection
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Alternating ranceomized least-seuares algoritihms

Matlab codes are included in tensor toolbox (Matlab)

B. W. Bader, T. G. Kolda, Matlab tensor toolbox version 2.6
(2015).

Matlab codes are included in Tensorly (Python)

J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, The
Journal of Machine Learning Research 20 (1) (2019) 925-930.
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Rancomized algorithms for paraiac2
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Parafac2 model

Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining
and data fusion: Models, applications, and scalable algorithms, ACM Trans. on Intelligent

Systems and Technology, vol. 8, no. 2, 16:1-16:44, 2016.



Rancdomizee algorithms for paratfac2

ALGORITHM 8: ALS Algorithm for PARAFAC2

Input: Multiset {X;} for 2 = 1: K and rank R.
Output: PARAFAC2 Decomposition of {X;}: {U;}, H, 8, V.
1: Initialize:

K
V <« R principal eigenvectors of ZX{X,@ C—

k=1

H <« I : .
fork=1..-Kdo Variety of Randomized

o 8Gnk) «Lfork=1---K algorithms can be used.
: end for

fork=1---Kdo
[Py, X1, Qil < truncated SVD of HS;VTX] at rank R ee—
: Ujia < QkPg

9: end for
10: fork=1.---Kdo
11: Compute Y(:,:, k) = UT' X,
12: end for R
13:  Run a single iteration of CP ALS (Algorithm 1) on Y and compute factors H, V., S.
14: fork=1.--Kdo _
15: 8(:, 1, k) <« Diag(S(k. 1))
16: end for
17. end while

2
3
4
5: while convergence criterion is not met do
6
7
8

Picture from: E.E. Papalexakis, C. Faloutsos, N.D. Sidiropoulos, Tensors for data mining and data fusion:
Models, applications, and scalable algorithms, ACM Trans. on Intelligent Systems and Technology, vol. 8,
no. 2, 16:1-16:44, 2016.
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Simulations

AN = randn (500, R), A®) =randn (500, R) ,
A®) =randn (500, R) . /77 — 001
X - [a0.A®.A0)  X-x(5) Y,

where Y is a 4-th order tensor with i.i.d Gaussian components.

K

Collinearity

(0.7, .8]
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Simulations

CPU Time (Second)
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5 6 7 8 g9 10 11 12 13 14 15
Tensor Rank

Algorithm R=5| R=10 | R=15

CP-ALS 0.9900 0.9900 0.9900

CPRAND-PREMIX | 0.9897 0.9898 0.9898

CPRAND 0.9893 0.9895 0.9896

RBS 0.9881 0.9897 0.9898




Simuletions

Coil-100 dataset

S. Nene, S. Nayar, and H. Murase, Columbia Object Image Library
(COIL-100), Tech. Report CUCS-006-96, Columbia University, 1996.

100 different object classes 72 different angles

128x128x3x 7200
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Simuletions

For CP-rank R =20 the following results were achieved

Cpu Time (Second) Fit

CP-ALS 220 0.686
CPRAND-PREMIX 77.46 0.684
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Simuletions

Video compression
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Video link: https://www.youtube.com/watch?v=1geWugmiGt4

Time duration: 1”: 29"
size :360x480x3x2200

360x480x3x300
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https://www.youtube.com/watch?v=1qeWugmiGt4

Simulations

Frame number: 20
Frame number: 1

/ Original video \ Compressed video by CP rank

Frame number: 60 Frame number: 100 R =100

Here again CP-PREMIX was approximately 2 times faster than CP-ALS.
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