
Fast algorithms for computation of Higher

Order SVD (HOSVD): Randomized algorithms

Salman Ahmadi-Asl

May 2019



➢ Randomized algorithms for low-rank matrix approximation

➢ Higher Order SVD (HOSVD) and related concepts

➢ Fast algorithms for HOSVD



Randomized Algorithms in numerical linear and multilinear algebra

Randomization is a framework for performing numerical linear and 
multilinear algebra tasks more efficiently.

We focus on low-rank matrix-tensor approximation



History of the evolution of randomized algorithms 

Picture was taken from:
https://arxiv.org/pdf/1608.02148.pdf 

Krylov subspace algorithms: take advantage of structure of matrices and performing 

matrix-vector efficiently but how about unstructured and dense data? 

Also they need to pass the data O(N) times!



Sketching-Sampling approach Random projection

Randomized Algorithms

Two main categorizes of the randomized low-rank approximation algorithms



Randomized Algorithms for low rank matrix approximation

Picture was taken from:
https://arxiv.org/pdf/1703.09074.pdf



Randomized Algorithms for low rank matrix approximation

Picture was taken from:
https://arxiv.org/pdf/1608.02148.pdf 



Randomized Algorithms for low-rank matrix approximation

is an orthonormal basis for the range of matrix TQQ A A Q A 

Orthogonal projector onto the range space of matrix A
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Randomized Algorithms for low rank matrix approximation

A multiple-pass algorithm

Randomized Algorithms

Multiple-pass algorithms

Single-pass algorithms

Randomized Algorithms

Fixed-Precision algorithms

Fixed-Rank algorithms

One pass

One pass
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A single-pass algorithm
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Solving a well-conditioned 
least-squares problem

Random matrices



Memory requirement for matrices and tensors

Curse of 
dimensionality 

Data communication

Disk Memory

!  Constant passes over data  !



Graphical representation of random projection algorithm

Picture was taken from:
https://arxiv.org/pdf/1608.02148.pdf 



✓ Gaussian distribution with zero mean and variance 1

Different types of random matrices can be utilized

✓ Bernoulli distribution

✓ Uniform distribution over (0,1)

✓ Structured random matrices (sparse random matrices)

In general, we have not seen any significant differences among different kinds of 

distributions for our test and uses datasets.

Improving storage and arithmetic costs.

Preserving data sparsity 
and efficient matrix-

matrix multiplications

✓ Rademacher distribution

Preserving data non-negativity



Two tricks for improving the accuracy of randomized algorithms

Oversampling strategy: Here more columns are used in the random projection step, 
to better capture the range of the matrix. For example, instead of R, we can R+P

columns. For more accurate solution, R+2P should be used. 

Power iteration scheme: Here the original data matrix is replaced with a new one 
with the same right and left singular vectors but a faster decay rate of singular vectors.

The power iteration scheme can provide better approximations for those matrices 
whose singular values decay very slowly.



A US Vq q T=

Randomized Algorithms for low rank matrix approximation

It is better to apply Randomized SVD on the following modified matrices

( ) ( )A or A AA A
qqq T=

QR or LU decompositions for make the algorithm more robust against 

round-off error 

A USVT=



Impact of power iteration in accelerating the decay rate of singular values

Picture was taken from:
https://arxiv.org/pdf/1608.02148.pdf 

In practice P=5 and q=1,2,3 are enough for achieving a good accuracy.



Low rank approximation via sampling columns/rows



Here different types of probability distributions can be utilized to sample columns/rows such as uniform, 
length-squared sampling and also with/without replacement.
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Sampling techniques as a low rank approximation

Uniform distribution





For simplicity of theoretical derivation, selection with replacement is assumed 
but our simulations show that this is less efficient than sampling without replacement.
More precisely, more columns are required to capture the range of a matrix if 
sampling with replacement is utilized especially for wide and fat matrices.

Few practical comments concerning sampling strategy

Our simulations on low-rank Gaussian and uniform random data and also real data including 
images and videos indicate the effectiveness of uniform sampling without replacement 
though we are not the first one reporting this fact!

Williams, C. K. I., & Seeger, M. (2000). Using the Nystrom method to speed up kernel 

machines. NIPS (pp. 682–688).

de Silva, V., & Tenenbaum, J. (2003). Global versus local methods in nonlinear 

dimensionality reduction. NIPS (pp. 705–712).

Kumar, S., Mohri, M., & Talwalkar, A. (2009). Sampling techniques for the  Nystrom 

method. AISTATS (pp. 304–311). Clearwater Beach, Florida: 

JMLR: W&CP 5.



A practical comment concerning the sampling strategy

Although leverage score scheme provides approximations
with a multiplicative error but they are of less practical
interest due to the high computational cost of computing
top singular vectors. Here it is suggested to randomized
SVD to approximate them.



Higher Order SVD (HOSVD)

Picture was taken from:

A. Cichocki, R. Zdunek, A. H. Phan, S.-i. Amari, Nonnegative matrix and tensor 

factorizations: applications to exploratory multi-way data analysis and blind source 

separation, John Wiley & Sons, 2009.



Why HOSVD????

✓ Orthogonality property makes much more easier developing algorithms for 
Tensor decomposition. 

✓ Pseudo-diagonal property of the core tensors. !Great Property! 

Density in these directions are reduced.

L DE LATHAUWER - 2000- Cited by 3155

LR Tucker - 1966 - Cited by 2696

✓ Explicit error representation of approximation In terms of singular values of
unfolding matrices. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwjdjdSlpoviAhWDs4sKHahPAkkQzgIwAXoECAYQBw&url=https://scholar.google.com/scholar?um%3D1%26ie%3DUTF-8%26lr%26cites%3D12302593773720186233&usg=AOvVaw18x1zn8dW7QE0AImCsnhbq&cshid=1557296795812842
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwjZzvHEpoviAhUfAxAIHbXPBhMQzgIwAXoECAQQAw&url=https://scholar.google.com/scholar?um%3D1%26ie%3DUTF-8%26lr%26cites%3D8402413931793878213&usg=AOvVaw1XOnBHQIgCL4oGHEeLUvPy


Unfolding matrices

Randomized algorithms for low rank approximations are applied to the unfolding matrices to 

make the deterministic algorithms faster.
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Randomized algorithms for HOSVD
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Randomized algorithms for HOSVD
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Randomized algorithms for HOSVD
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Sketch

Randomized algorithms for HOSVD

A single-pass algorithm 
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Sampling columns

Uniform sampling (with or without replacement)

Length-squared distribution 

Leverage scores distribution

Sampling
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Randomized algorithms for HOSVD

Factor estimation by sampling fibers in the unfolding matrices
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i-th row leverage score

j-th column leverage score

Leverage score distribution for  column 

selection

The maximum of the leverage score is called coherence of a matrix.

Randomized algorithms for HOSVD



• mlsvd_rsi- Sequentially truncated MLSVD using randomized subspace

• https://github.com/OsmanMalik/tucker-tensorsketch

• https://tsourakakis.com/mining-tensors/

MATLAB codes for the randomized HOSVD

Random projection

Sampling

https://github.com/OsmanMalik/tucker-tensorsketch
https://tsourakakis.com/mining-tensors/



