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Randomized Algorithms in numerical linear and multilinear algebra

Randomization is a framework for performing numerical linear and
multilinear algebra tasks more efficiently.

Matrix multiplication.

Overdetermined linear systems.

Overdetermined least squares.

Nonnegative least squares.

Preconditioned least squares.

We focus on low-rank matrix-tensor approximation
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Randomized SVD

Monte-Carlo SVD . I
via random projections
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Krylov subspace algorithms: take advantage of structure of matrices and performing
matrix-vector efficiently but how about unstructured and dense data?
Also they need to pass the data O(N) times!



Two main categorizes of the randomized low-rank approximation algorithms

Randomized Algorithms

Sketching-Sampling approach Random projection




Randomized Algorithms for low rank matrix approximation
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Randomized Algorithms for low rank matrix approximation

Accuracy
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Randomized Algorithms for low-rank matrix approximation

AeR"™, QeR"™, rank(A)=R

QQ'" A * Q is an orthonormal basis for the range of matrix A

T
P= QQ Orthogonal projector onto the range space of matrix A

origin

col(A)




Randomized Algorithms for low rank matrix approximation

Algorithm 1: Randomized SVD algorithm

Input : Matrix A € R"*/ and target rank R:

Output: U € RI*% § e REXR v ¢ RI*R
1 Generate a random matrix € R”*# with prescribed probability distribution ;
> FormY = A$Q2: mm) One pass

3 Compute the QR decomposition of matrix Y = QR
Compute B = QT A ‘ One pass »

A multiple-pass algorithm

-

N

Compute the full SVD of the matrix B = UsSVv':
6 U= QU:
78tU=U(,1:R).S=8(:.1: R). V=V, 1:R)

Single-pass algorithms

Randomized Algorithms |

Multiple-pass algorithms

Fixed-Rank algorithms

Randomized Algorithms ;

Fixed-Precision algorithms )



A single-pass algorithm Random matrices

AR Y =4Q€cR and W =%¥A4cR*
(Q.~)=ar(Y,0)
Q"A=(¥Q)'W

W =¥ (QQ"A)+¥(A-QQ'A)~(¥Q)(Q"A)

4

QT A~ (\{JQ)TW - Solving a well-conditioned

least-squares problem




Memory requirement for matrices and tensors

Data Memory requirement
10* x 10% 0.7451 GB
10* x 10° 7.4506 GB
10° x 10° 74.5058 GB
500 x 500 x 500 0.9313 GB *

500 x 500 x 500 x 500 465.6613 GB
360 x 480 x 3 x 2248 8.6826 GB

TABLE 1.2
Memory requirement for matrices and tensors of different sizes (GB=Gigabyte).

Curse of
dimensionality

Data communication

I Constant passes over data ! )




Graphical representation of random projection algorithm
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Different types of random matrices can be utilized

v" Gaussian distribution with zero mean and variance 1

v' Uniform distribution over (0,1) —"pg Preserving data non-negativity

v" Bernoulli distribution

v Rademacher distribution == | |mproving storage and arithmetic costs.

v' Structured random matrices (sparse random matrices)

—p | Preserving data sparsity
and efficient matrix-
matrix multiplications

In general, we have not seen any significant differences among different kinds of
distributions for our test and uses datasets.




Two tricks for improving the accuracy of randomized algorithms

Oversampling strategy: Here more columns are used in the random projection step,
to better capture the range of the matrix. For example, instead of R, we can R+P
columns. For more accurate solution, R+2P should be used.

Power iteration scheme: Here the original data matrix is replaced with a new one
with the same right and left singular vectors but a faster decay rate of singular vectors.

\ 4

The power iteration scheme can provide better approximations for those matrices
whose singular values decay very slowly.

R
[4-4[;= 2 o7

=k




Randomized Algorithms for low rank matrix approximation

It is better to apply Randomized SVD on the following modified matrices

A=USV! A or AV =(AAT) A

/
\AA(Q) _ yszatiyT

A% =USV'

Algorithm 2: Computing A (9§ in an efficient way

Input : Matrix A € R'* and a target rank R:
Output: Y = A@WQ;

1 Generate a random matrix £2 € R7*% with prescribed probability distribution;
2 FormY = A();

sfori=1,---,gdo

4 Compute matrix Y = ATY;

5 Compute matrix Y = AY;

: —
6 end l

QR or LU decompositions for make the algorithm more robust against
round-off error




Impact of power iteration in accelerating the decay rate of singular values
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In practice P=5 and g=1,2,3 are enough for achieving a good accuracy.




Low rank approximation via sampling columns/rows




Sampling techniques as a low rank approximation

Here different types of probability distributions can be utilized to sample columns/rows such as uniform,
length-squared sampling and also with/without replacement.

2

Uniform distribution ”A(Z, J)”

p.=——-%, j=1...,J
LAk

||A— B||2F < ||A—AR||2F +Term =) Additive error norm

Probability based on the leverage scores R

J :||VR(j,:)||Z, V, e R

”A - B||2F < ‘9||A —-Aq ”i — Multiplicative error norm

j=1 |R

J
21 =Vl =trace[VrIVR]= R <




° If pj = M—(Aﬁgb and sampling is performed with replucement

: 4R
|A—QQTAl[; < |A— AglF +/ = A%

This sampling minimizes the variance for the error of the approximation.
o Ifp; = % and sampling is performed with replacement,

4}? J
|A -—QQ"A|, < |A— Azl + ZHA i)l

e Ifpj = L and sampling is performed without replacement,

o=

At 9 4R (J & 14
HA—QQ A HF§||A—AR||F+ S5 2 IAGl.
, s

A R is the best rank-R approximation of matrix A in least-squares sense, for any ¢ < J, with

probability at least 1 — ¢




Few practical comments concerning sampling strategy

For simplicity of theoretical derivation, selection with replacement is assumed

but our simulations show that this is less efficient than sampling without replacement.
More precisely, more columns are required to capture the range of a matrix if
sampling with replacement is utilized especially for wide and fat matrices.

Our simulations on low-rank Gaussian and uniform random data and also real data including

images and videos indicate the effectiveness of uniform sampling without replacement
though we are not the first one reporting this fact!

-

Williams, C. K. I., & Seeger, M. (2000). Using the Nystrom method to speed up kernel
machines. NIPS (pp. 682—688).

de Silva, V., & Tenenbaum, J. (2003). Global versus local methods in nonlinear
dimensionality reduction. NIPS (pp. 705-712).

Kumar, S., Mohri, M., & Talwalkar, A. (2009). Sampling techniques for the Nystrom
method. AISTATS (pp. 304-311). Clearwater Beach, Florida:
JMLR: W&CP 5.




A practical comment concerning the sampling strategy

Although leverage score scheme provides approximations
with a multiplicative error but they are of less practical
interest due to the high computational cost of computing
top singular vectors. Here it is suggested to randomized
SVD to approximate them.




Higher Order SVD (HOSVD)

(IxTxQ) (IxJ) (JxRxP) (RxT) (IxTxQ)
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A. Cichocki, R. Zdunek, A. H. Phan, S.-i. Amari, Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way data analysis and blind source
separation, John Wiley & Sons, 2009.




L DE LATHAUWER - 2000- Cited by 3155

Why HOSVD????
LR Tucker - 1966 - Cited by 2696

v Orthogonality property makes much more easier developing algorithms for
Tensor decomposition.

v" Explicit error representation of approximation In terms of singular values of
unfolding matrices.

v Pseudo-diagonal property of the core tensors. !Great Property!

Density in these directions are reduced.

~
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Unfolding matrices

Mode-1 unfolding: A, € R"" "
12 Iz 12 ]2
8
| P F— . Mode-2 unfolding: A, € R?"""
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Randomized algorithms for low rank approximations are applied to the unfolding matrices to
make the deterministic algorithms faster.

)




Randomized algorithms for HOSVD
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Randomized algorithms for HOSVD




Randomized algorithms for HOSVD

A single-pass algorithm

-
H(I)
I

S=Hox, (,QY) x, (2,0) x, (2,Q%)




Randomized algorithms for HOSVD

Factor estimation by sampling fibers in the unfolding matrices

Sampling

Il ) |||||| |||||||
L 4
C

Uniform sampling (with or without replacement)

Sampling columns™ | ength-squared distribution

Leverage scores distribution




Randomized algorithms for HOSVD

j-th column leverage score

<[ Ttm _ N glm
X, €R ™ EVATS 1,2,...,£!|m ;h:
i-th row leverage score g Ii:HUR(i’:)HE' i=12,...,1 IZnIiZR
j=L

l.
o _l _
Leverage score distribution for column » P; =R =121
selection m=n

The maximum of the leverage score is called coherence of a matrix.




MATLAB codes for the randomized HOSVD

* mlsvd_rsi- Sequentially truncated MLSVD using randomized subspace\
Random projection

* https://github.com/OsmanMalik/tucker-tensorsketch

* https://tsourakakis.com/mining-tensors

Sampling



https://github.com/OsmanMalik/tucker-tensorsketch
https://tsourakakis.com/mining-tensors/

Thanls for your attentiond




